Topic

# Bending of plates

About: Bending of plates is a(n) research topic. Over the lifetime, 7668 publication(s) have been published within this topic receiving 169972 citation(s).

...read more

##### Papers

More filters

•

01 Jan 1959-

Abstract: CONTENTS: BENDING OF LONG RECTANGULAR PLATES TO A CYLINDRICAL SURFACE PURE BENDING OF PLATES SYMMETRICAL BENDING OF CIRCULAR PLATES SMALL DEFLECTIONS OF LATERALLY LOADED PLATES SIMPLY SUPPORTED RECTANGULAR PLATES RECTANGULAR PLATES WITH VARIOUS EDGE CONDITIONS CONTINUOUS RECTANGULAR PLATES PLATES ON ELASTIC FOUNDATION PLATES OF VARIOUS SHAPES SPECIAL AND APPROXIMATE METHODS IN THEORY OF PLATES BENDING OF ANISTROPIC PLATES BENDING OF PLATES UNDER THE COMBINED ACTION OF LATERAL LOADS AND FORCES IN THE MIDDLE PLANE OF THE PLATE LARGE DEFLECTIONS OF PLATES DEFORMATION OF SHELLS WITHOUT BENDING GENERAL THEORY OF CYLINDRICAL SHELLS SHELLS HAVING THE FORM OF A SURFACE OF REVOLUTION AND LOADED SYMMETRICALLY WITH RESPECT TO THEIR AXIS.

...read more

10,194 citations

•

01 Jan 1974-

Abstract: Notation. Introduction. One-Dimensional Elements, Computational Procedures. Basic Elements. Formulation Techniques: Variational Methods. Formulation Techniques: Galerkin and Other Weighted Residual Methods. Isoparametric Elements. Isoparametric Triangles and Tetrahedra. Coordinate Transformation and Selected Analysis Options. Error, Error Estimation, and Convergence. Modeling Considerations and Software Use. Finite Elements in Structural Dynamics and Vibrations. Heat Transfer and Selected Fluid Problems. Constaints: Penalty Forms, Locking, and Constraint Counting. Solid of Revolution. Plate Bending. Shells. Nonlinearity: An Introduction. Stress Stiffness and Buckling. Appendix A: Matrices: Selected Definition and Manipulations. Appendix B: Simultaneous Algebraic Equations. Appendix C: Eigenvalues and Eigenvectors. References. Index.

...read more

6,053 citations

•

01 Jan 2004-

Abstract: Equations of Anisotropic Elasticity, Virtual Work Principles, and Variational Methods Fiber-Reinforced Composite Materials Mathematical Preliminaries Equations of Anisotropic Entropy Virtual Work Principles Variational Methods Summary Introduction to Composite Materials Basic Concepts and Terminology Constitutive Equations of a Lamina Transformation of Stresses and Strains Plan Stress Constitutive Relations Classical and First-Order Theories of Laminated Composite Plates Introduction An Overview of Laminated Plate Theories The Classical Laminated Plate Theory The First-Order Laminated Plate Theory Laminate Stiffnesses for Selected Laminates One-Dimensional Analysis of Laminated Composite Plates Introduction Analysis of Laminated Beams Using CLPT Analysis of Laminated Beams Using FSDT Cylindrical Bending Using CLPT Cylindrical Bending Using FSDT Vibration Suppression in Beams Closing Remarks Analysis of Specially Orthotropic Laminates Using CLPT Introduction Bending of Simply Supported Rectangular Plates Bending of Plates with Two Opposite Edges Simply Supported Bending of Rectangular Plates with Various Boundary Conditions Buckling of Simply Supported Plates Under Compressive Loads Buckling of Rectangular Plates Under In-Plane Shear Load Vibration of Simply Supported Plates Buckling and Vibration of Plates with Two Parallel Edges Simply Supported Transient Analysis Closure Analytical Solutions of Rectangular Laminated Plates Using CLPT Governing Equations in Terms of Displacements Admissible Boundary Conditions for the Navier Solutions Navier Solutions of Antisymmetric Cross-Ply Laminates Navier Solutions of Antisymmetric Angle-Ply Laminates The Levy Solutions Analysis of Midplane Symmetric Laminates Transient Analysis Summary Analytical Solutions of Rectangular Laminated Plates Using FSDT Introduction Simply Supported Antisymmetric Cross-Ply Laminated Plates Simply Supported Antisymmetric Angle-Ply Laminated Plates Antisymmetric Cross-Ply Laminates with Two Opposite Edges Simply Supported Antisymmetric Angle-Ply Laminates with Two Opposite Edges Simply Supported Transient Solutions Vibration Control of Laminated Plates Summary Theory and Analysis of Laminated Shells Introduction Governing Equations Theory of Doubly-Curved Shell Vibration and Buckling of Cross-Ply Laminated Circular Cylindrical Shells Linear Finite Element Analysis of Composite Plates and Shells Introduction Finite Element Models of the Classical Plate Theory (CLPT) Finite Element Models of Shear Deformation Plate Theory (FSDT) Finite Element Analysis of Shells Summary Nonlinear Analysis of Composite Plates and Shells Introduction Classical Plate Theory First-Order Shear Deformation Plate Theory Time Approximation and the Newton-Raphson Method Numerical Examples of Plates Functionally Graded Plates Finite Element Models of Laminated Shell Theory Continuum Shell Finite Element Postbuckling Response and Progressive Failure of Composite Panels in Compression Closure Third-Order Theory of Laminated Composite Plates and Shells Introduction A Third-Order Plate Theory Higher-Order Laminate Stiffness Characteristics The Navier Solutions Levy Solutions of Cross-Ply Laminates Finite Element Model of Plates Equations of Motion of the Third-Order Theory of Doubly-Curved Shells Layerwise Theory and Variable Kinematic Model Introduction Development of the Theory Finite Element Model Variable Kinematic Formulations Application to Adaptive Structures Layerwise Theory of Cylindrical Shell Closure Subject Index

...read more

3,456 citations

••

Abstract: As an analog to the bending case published in an earlier paper, the stress singularities in plates subjected to extension in their plane are discussed. Three sets of boundary conditions on the radial edges are investigated: free-free, clamped-clamped, and clamped-free. Providing the vertex angle is less than 180 degrees, it is found that unbounded stresses occur at the vertex only in the case of the mixed boundary condition with the strength of the singularity being somewhat stronger than for the similar bending case. For vertex angles between 180 and 360 degrees, all the cases considered may have stress singularities.
In amplification of some work of Southwell, it is shown that there are certain analogies between the characteristic equations governing the stresses in extension and bending, respectively, if ν, Poisson's ratio, is replaced by -ν. Finally, the free-free extensional plate behaves locally at the origin exactly the same as a clamped-clamped plate in bending, independent of Poisson's ratio.
In conclusion, it is noted that the free-free case analysis
may be applied to stress concentrations in V-shaped
notches.

...read more

2,048 citations

1

•

07 Nov 2013-

Abstract: General Problems in solid mechanics and non-linearity Galerkin method of approximation - irreducible and mixed forms Solution of non-linear algebraic equations Inelastic and non-linear materials Geometrically non-linear problems - finite deformation Material constitution for finite deformation Treatment of Constraints - contact and tied interfaces Pseudo-Rigid & Rigid-Flexible Bodies Discrete element methods Structural Mechanics Problems in One Dimension - rods Plate Bending Approximation Thick Reissner-Mindlin Plates -Irreducible & Mixed Formulations Shells as an assembly of flat elements Curved rods and axisymmetric shells Shells as a special case of three-dimensional analysis Semi-analytical finite element processes Non-linear structural processes - large displacement and instability Multiscale modelling Computer procedures for finite element analysis Appendices

...read more

1,673 citations