scispace - formally typeset
Search or ask a question
Topic

Bessel beam

About: Bessel beam is a research topic. Over the lifetime, 1946 publications have been published within this topic receiving 42264 citations.


Papers
More filters
Proceedings ArticleDOI
08 May 2008
TL;DR: In this article, a 3-wave interaction picture that allows for a transparent physical interpretation of these complex spatio-temporal events is discussed, where a seed pulse can selectively generate Raman Stokes shifted waves by scattering off of different arms of the spectrally observed X-feature.
Abstract: Ultrafast intense femtosecond laser pulses spontaneously undergo critical collapse in air and condensed media above some critical power. In normally dispersive media, such pulses can spontaneously generate dynamical X-waves where distinct X-features appear in the spectrally-resolved far-field. These nonlinear self-trapped pulses resemble linear Bessel beams - the latter exhibit extended line rather than point foci and are robust to strong perturbations. Nonlinear X-waves can be directly generated by using an axicon lens and have the potential to generate highly nonlinear, extended interaction zones relative to pulses with Gaussian profiles. Potential applications of these pulsed sources to controlling and extending white light supercontinuum and plasma channel generation will be discussed. X-wave generation in normally dispersive media is associated witha cascade of pulse splittings where individual split pulses have been identified with different arms of the spectrally observed X-feature. This allows for novel pump-probe experiments where a seed pulse can selectively generate Raman Stokes shifted waves by scattering off of different arms of the X-feature. We will discuss a 3-wave interaction picture that allows for a transparent physical interpretation of these complex spatio-temporal events.
Journal ArticleDOI
01 Mar 2022-Optik
TL;DR: In this paper , the focusing characteristics of chirped phase modulating the Bessel-Gaussian (BG) beam were explored and the evolution of longitudinal field and transverse field was also explored in detail.
Journal ArticleDOI
TL;DR: In this paper , a CARS spectroscopic method using a Bessel beam to enhance the spectral fidelity and signal-to-noise ratio (SNR) in a quasi-turbulent environment is presented.
Abstract: Coherent anti-Stokes Raman scattering (CARS) spectroscopy plays an important role in chemical analysis for transient flow dynamics. Due to the turbulent ambient conditions, the CARS spectrum often suffers from a poor signal-to-noise ratio (SNR) and cannot provide a convincing measurement. Here, we report on a CARS spectroscopic method using a Bessel beam to enhance the spectral fidelity and SNR in a quasi-turbulent environment. Compared with traditional CARS, the measurement accuracy is significantly improved by taking advantage of the anti-scattering and self-healing characteristics of the Bessel beam. Our preliminary results indicate that Bessel beam CARS could be a promising method for high precision turbulent flow measurement fields. Graphical Abstract
Journal ArticleDOI
TL;DR: In this paper , the authors proposed to use axicons as an ad-hoc element to the existing ultrasonic transducers to increase the acoustic energy inside the attenuative layer.

Network Information
Related Topics (5)
Resonator
76.5K papers, 1M citations
87% related
Laser
353.1K papers, 4.3M citations
84% related
Optical fiber
167K papers, 1.8M citations
84% related
Polarization (waves)
65.3K papers, 984.7K citations
79% related
Diffraction
63.7K papers, 1M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022149
2021113
2020126
2019134
2018140