scispace - formally typeset
Search or ask a question
Topic

Biasing

About: Biasing is a research topic. Over the lifetime, 29422 publications have been published within this topic receiving 301035 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the 0.7 (2e^2/h) conductance anomaly is investigated in strongly confined, etched GaAs/GaAlAs quantum point contacts, by measuring the differential conductance as a function of source-drain and gate bias as well as the temperature.
Abstract: The 0.7 (2e^2/h) conductance anomaly is studied in strongly confined, etched GaAs/GaAlAs quantum point contacts, by measuring the differential conductance as a function of source-drain and gate bias as well as a function of temperature. We investigate in detail how, for a given gate voltage, the differential conductance depends on the finite bias voltage and find a so-called self-gating effect, which we correct for. The 0.7 anomaly at zero bias is found to evolve smoothly into a conductance plateau at 0.85 (2e^2/h) at finite bias. Varying the gate voltage the transition between the 1.0 and the 0.85 (2e^2/h) plateaus occurs for definite bias voltages, which defines a gate voltage dependent energy difference $\Delta$. This energy difference is compared with the activation temperature T_a extracted from the experimentally observed activated behavior of the 0.7 anomaly at low bias. We find \Delta = k_B T_a which lends support to the idea that the conductance anomaly is due to transmission through two conduction channels, of which the one with its subband edge \Delta below the chemical potential becomes thermally depopulated as the temperature is increased.

185 citations

Journal ArticleDOI
TL;DR: A pH sensor fabricated on a single chip by an unmodified, commercial 0.6-/spl mu/m CMOS process is presented in this article, which comprises a circuit for making differential measurements between an ion-sensitive field effect transistor (ISFET) and a reference FET (this articleET).
Abstract: A pH sensor fabricated on a single chip by an unmodified, commercial 0.6-/spl mu/m CMOS process is presented. The sensor comprises a circuit for making differential measurements between an ion-sensitive field-effect transistor (ISFET) and a reference FET (REFET). The ISFET has a floating-gate structure and uses the silicon nitride passivation layer as a pH-sensitive insulator. As fabricated, it has a large threshold voltage that is postulated to be caused by a trapped charge on the floating gate. Ultraviolet radiation and bulk-substrate biasing is used to permanently modify the threshold voltage so that the ISFET can be used in a battery-operated circuit. A novel post-processing method using a single layer of photoresist is used to define the sensing areas and to provide robust encapsulation for the chip. The complete circuit, operating from a single 3-V supply, provides an output voltage proportional to pH and can be powered down when not required.

185 citations

Book
01 Aug 1995
TL;DR: In this article, a two-dimensional (2D) vertical cavity surface emitting laser (VCSEL) structures have been grown by both metal-organic chemical vapour deposition (MOCVD) and molecular beam fabrication (MBE).
Abstract: Vertical cavity surface emitting laser (VCSEL) structures have been grown by both metal-organic chemical vapour deposition (MOCVD) and molecular beam epitaxy (MBE). These incorporate 3 strained InGaAs / GaAs quantum wells placed resonantly in a two wavelength long optical cavity, formed between AlAs / GaAs quarter wave dielectric reflector stacks through which current is injected. The reflection spectra of these stacks is studied in detail; the effects on the laser threshold gain of absorption due to impurities and of errors in growth are investigated. Methods of disruption of the AlAs / GaAs heterointerfaces have been used to reduce the operating voltage. The completed designs use 200A intermediate layers containing 30 or 50% aluminium or a superlattice graded region simpler than that used in previous designs. The effectiveness acceptor dopants; Be in MBE, C and Zn in MOCVD; is studied also. Modulation doping was employed to reduce the effects of optical absorption. Devices were fabricated into mesas by SiC14 reactive ion etching or defined by proton implant isolation. MBE grown devices were resonant at wavelengths in the range 950 to 1059mn with essentially constant (at —1020nm) eihhi transition energies in the wells. A detailed study of the wavelength variation of threshold current density Jth (X)was made. A minimum of 366A.cnr2 was measured at 1018nm in mesa devices. A similar relation is found for ion-implanted devices but the minimum is increased to 535A.cm-2 by incomplete isolation. Gain calculations, including strain effects, are used to explain the Jth(X) variation. Implanted devices offer superior c.w. performance due to reduced thermal and ohmic resistances. The relative offset between the gain spectrum and cavity resonance was examined for c.w. operation. It was found that carrier thermal effects limit the output power rather than shifts in the offset. The bias voltage of MOCVD grown devices is as low as 1.7V and the threshold current is as low as 764A.cm-2. This is higher than for MBE grown devices because of growth thickness errors and non-optimal alignment of the gain spectrum and cavity mode. The uniformity in emission wavelength is ±1% over 80% of a 2 inch diameter wafer, offering suitability for very large uniform arrays.

184 citations

Patent
17 May 2005
TL;DR: In this article, a method of depositing a carbon layer on a workpiece includes placing the workpiece in a reactor chamber, introducing a carbon-containing process gas into the chamber, generating a reentrant toroidal RF plasma current in a path that includes a process zone overlying the work piece by coupling plasma RF source power to an external portion of the path, and coupling RF plasma bias power or bias voltage to the workpieces.
Abstract: A method of depositing a carbon layer on a workpiece includes placing the workpiece in a reactor chamber, introducing a carbon-containing process gas into the chamber, generating a reentrant toroidal RF plasma current in a reentrant path that includes a process zone overlying the workpiece by coupling plasma RF source power to an external portion of the reentrant path, and coupling RF plasma bias power or bias voltage to the workpiece.

182 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
91% related
Thin film
275.5K papers, 4.5M citations
91% related
Band gap
86.8K papers, 2.2M citations
89% related
Dielectric
169.7K papers, 2.7M citations
89% related
Quantum dot
76.7K papers, 1.9M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023256
2022488
2021480
2020923
2019946
2018977