Topic
Bicubic interpolation
About: Bicubic interpolation is a(n) research topic. Over the lifetime, 3348 publication(s) have been published within this topic receiving 73126 citation(s).
Papers published on a yearly basis
Papers
More filters
Book•
[...]
TL;DR: This chapter discusses the construction of B-spline Curves and Surfaces using Bezier Curves, as well as five Fundamental Geometric Algorithms, and their application to Curve Interpolation.
Abstract: One Curve and Surface Basics.- 1.1 Implicit and Parametric Forms.- 1.2 Power Basis Form of a Curve.- 1.3 Bezier Curves.- 1.4 Rational Bezier Curves.- 1.5 Tensor Product Surfaces.- Exercises.- Two B-Spline Basis Functions.- 2.1 Introduction.- 2.2 Definition and Properties of B-spline Basis Functions.- 2.3 Derivatives of B-spline Basis Functions.- 2.4 Further Properties of the Basis Functions.- 2.5 Computational Algorithms.- Exercises.- Three B-spline Curves and Surfaces.- 3.1 Introduction.- 3.2 The Definition and Properties of B-spline Curves.- 3.3 The Derivatives of a B-spline Curve.- 3.4 Definition and Properties of B-spline Surfaces.- 3.5 Derivatives of a B-spline Surface.- Exercises.- Four Rational B-spline Curves and Surfaces.- 4.1 Introduction.- 4.2 Definition and Properties of NURBS Curves.- 4.3 Derivatives of a NURBS Curve.- 4.4 Definition and Properties of NURBS Surfaces.- 4.5 Derivatives of a NURBS Surface.- Exercises.- Five Fundamental Geometric Algorithms.- 5.1 Introduction.- 5.2 Knot Insertion.- 5.3 Knot Refinement.- 5.4 Knot Removal.- 5.5 Degree Elevation.- 5.6 Degree Reduction.- Exercises.- Six Advanced Geometric Algorithms.- 6.1 Point Inversion and Projection for Curves and Surfaces.- 6.2 Surface Tangent Vector Inversion.- 6.3 Transformations and Projections of Curves and Surfaces.- 6.4 Reparameterization of NURBS Curves and Surfaces.- 6.5 Curve and Surface Reversal.- 6.6 Conversion Between B-spline and Piecewise Power Basis Forms.- Exercises.- Seven Conics and Circles.- 7.1 Introduction.- 7.2 Various Forms for Representing Conics.- 7.3 The Quadratic Rational Bezier Arc.- 7.4 Infinite Control Points.- 7.5 Construction of Circles.- 7.6 Construction of Conies.- 7.7 Conic Type Classification and Form Conversion.- 7.8 Higher Order Circles.- Exercises.- Eight Construction of Common Surfaces.- 8.1 Introduction.- 8.2 Bilinear Surfaces.- 8.3 The General Cylinder.- 8.4 The Ruled Surface.- 8.5 The Surface of Revolution.- 8.6 Nonuniform Scaling of Surfaces.- 8.7 A Three-sided Spherical Surface.- Nine Curve and Surface Fitting.- 9.1 Introduction.- 9.2 Global Interpolation.- 9.2.1 Global Curve Interpolation to Point Data.- 9.2.2 Global Curve Interpolation with End Derivatives Specified.- 9.2.3 Cubic Spline Curve Interpolation.- 9.2.4 Global Curve Interpolation with First Derivatives Specified.- 9.2.5 Global Surface Interpolation.- 9.3 Local Interpolation.- 9.3.1 Local Curve Interpolation Preliminaries.- 9.3.2 Local Parabolic Curve Interpolation.- 9.3.3 Local Rational Quadratic Curve Interpolation.- 9.3.4 Local Cubic Curve Interpolation.- 9.3.5 Local Bicubic Surface Interpolation.- 9.4 Global Approximation.- 9.4.1 Least Squares Curve Approximation.- 9.4.2 Weighted and Constrained Least Squares Curve Fitting.- 9.4.3 Least Squares Surface Approximation.- 9.4.4 Approximation to Within a Specified Accuracy.- 9.5 Local Approximation.- 9.5.1 Local Rational Quadratic Curve Approximation.- 9.5.2 Local Nonrational Cubic Curve Approximation.- Exercises.- Ten Advanced Surface Construction Techniques.- 10.1 Introduction.- 10.2 Swung Surfaces.- 10.3 Skinned Surfaces.- 10.4 Swept Surfaces.- 10.5 Interpolation of a Bidirectional Curve Network.- 10.6 Coons Surfaces.- Eleven Shape Modification Tools.- 11.1 Introduction.- 11.2 Control Point Repositioning.- 11.3 Weight Modification.- 11.3.1 Modification of One Curve Weight.- 11.3.2 Modification of Two Neighboring Curve Weights.- 11.3.3 Modification of One Surface Weight.- 11.4 Shape Operators.- 11.4.1 Warping.- 11.4.2 Flattening.- 11.4.3 Bending.- 11.5 Constraint-based Curve and Surface Shaping.- 11.5.1 Constraint-based Curve Modification.- 11.5.2 Constraint-based Surface Modification.- Twelve Standards and Data Exchange.- 12.1 Introduction.- 12.2 Knot Vectors.- 12.3 Nurbs Within the Standards.- 12.3.1 IGES.- 12.3.2 STEP.- 12.3.3 PHIGS.- 12.4 Data Exchange to and from a NURBS System.- Thirteen B-spline Programming Concepts.- 13.1 Introduction.- 13.2 Data Types and Portability.- 13.3 Data Structures.- 13.4 Memory Allocation.- 13.5 Error Control.- 13.6 Utility Routines.- 13.7 Arithmetic Routines.- 13.8 Example Programs.- 13.9 Additional Structures.- 13.10 System Structure.- References.
4,292 citations
[...]
27 Jun 2016
TL;DR: This paper presents the first convolutional neural network capable of real-time SR of 1080p videos on a single K2 GPU and introduces an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output.
Abstract: Recently, several models based on deep neural networks have achieved great success in terms of both reconstruction accuracy and computational performance for single image super-resolution. In these methods, the low resolution (LR) input image is upscaled to the high resolution (HR) space using a single filter, commonly bicubic interpolation, before reconstruction. This means that the super-resolution (SR) operation is performed in HR space. We demonstrate that this is sub-optimal and adds computational complexity. In this paper, we present the first convolutional neural network (CNN) capable of real-time SR of 1080p videos on a single K2 GPU. To achieve this, we propose a novel CNN architecture where the feature maps are extracted in the LR space. In addition, we introduce an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output. By doing so, we effectively replace the handcrafted bicubic filter in the SR pipeline with more complex upscaling filters specifically trained for each feature map, whilst also reducing the computational complexity of the overall SR operation. We evaluate the proposed approach using images and videos from publicly available datasets and show that it performs significantly better (+0.15dB on Images and +0.39dB on Videos) and is an order of magnitude faster than previous CNN-based methods.
3,010 citations
[...]
TL;DR: It can be shown that the order of accuracy of the cubic convolution method is between that of linear interpolation and that of cubic splines.
Abstract: Cubic convolution interpolation is a new technique for resampling discrete data. It has a number of desirable features which make it useful for image processing. The technique can be performed efficiently on a digital computer. The cubic convolution interpolation function converges uniformly to the function being interpolated as the sampling increment approaches zero. With the appropriate boundary conditions and constraints on the interpolation kernel, it can be shown that the order of accuracy of the cubic convolution method is between that of linear interpolation and that of cubic splines. A one-dimensional interpolation function is derived in this paper. A separable extension of this algorithm to two dimensions is applied to image data.
2,789 citations
[...]
TL;DR: This paper deals with the single image scale-up problem using sparse-representation modeling, and assumes a local Sparse-Land model on image patches, serving as regularization, to recover an original image from its blurred and down-scaled noisy version.
Abstract: This paper deals with the single image scale-up problem using sparse-representation modeling. The goal is to recover an original image from its blurred and down-scaled noisy version. Since this problem is highly ill-posed, a prior is needed in order to regularize it. The literature offers various ways to address this problem, ranging from simple linear space-invariant interpolation schemes (e.g., bicubic interpolation), to spatially-adaptive and non-linear filters of various sorts. We embark from a recently-proposed successful algorithm by Yang et. al. [1,2], and similarly assume a local Sparse-Land model on image patches, serving as regularization. Several important modifications to the above-mentioned solution are introduced, and are shown to lead to improved results. These modifications include a major simplification of the overall process both in terms of the computational complexity and the algorithm architecture, using a different training approach for the dictionary-pair, and introducing the ability to operate without a training-set by boot-strapping the scale-up task from the given low-resolution image. We demonstrate the results on true images, showing both visual and PSNR improvements.
2,019 citations
[...]
TL;DR: In this article, a monotone piecewise bicubic interpolation algorithm was proposed for data on a rectangular mesh, where the first partial derivatives and first mixed partial derivatives are determined by the mesh points.
Abstract: In a 1980 paper [SIAM J. Numer. Anal., 17 (1980), pp. 238–246] the authors developed a univariate piecewise cubic interpolation algorithm which produces a monotone interpolant to monotone data. This paper is an extension of those results to monotone $\mathcal{C}^1 $ piecewise bicubic interpolation to data on a rectangular mesh. Such an interpolant is determined by the first partial derivatives and first mixed partial (twist) at the mesh points. Necessary and sufficient conditions on these derivatives are derived such that the resulting bicubic polynomial is monotone on a single rectangular element. These conditions are then simplified to a set of sufficient conditions for monotonicity. The latter are translated to a system of linear inequalities, which form the basis for a monotone piecewise bicubic interpolation algorithm.
1,942 citations