scispace - formally typeset

Topic

Bidirectional associative memory

About: Bidirectional associative memory is a(n) research topic. Over the lifetime, 1903 publication(s) have been published within this topic receiving 56009 citation(s). The topic is also known as: DAP & BAM.
Papers
More filters

Journal ArticleDOI
TL;DR: A model of a system having a large number of simple equivalent components, based on aspects of neurobiology but readily adapted to integrated circuits, produces a content-addressable memory which correctly yields an entire memory from any subpart of sufficient size.
Abstract: Computational properties of use of biological organisms or to the construction of computers can emerge as collective properties of systems having a large number of simple equivalent components (or neurons). The physical meaning of content-addressable memory is described by an appropriate phase space flow of the state of a system. A model of such a system is given, based on aspects of neurobiology but readily adapted to integrated circuits. The collective properties of this model produce a content-addressable memory which correctly yields an entire memory from any subpart of sufficient size. The algorithm for the time evolution of the state of the system is based on asynchronous parallel processing. Additional emergent collective properties include some capacity for generalization, familiarity recognition, categorization, error correction, and time sequence retention. The collective properties are only weakly sensitive to details of the modeling or the failure of individual devices.

15,722 citations


Journal ArticleDOI
Bart Kosko1Institutions (1)
03 Jan 1988-
TL;DR: The author proves that every n-by-p matrix M is a bidirectionally stable heteroassociative content-addressable memory for both binary/bipolar and continuous neurons.
Abstract: Stability and encoding properties of two-layer nonlinear feedback neural networks are examined. Bidirectionality is introduced in neural nets to produce two-way associative search for stored associations. The bidirectional associative memory (BAM) is the minimal two-layer nonlinear feedback network. The author proves that every n-by-p matrix M is a bidirectionally stable heteroassociative content-addressable memory for both binary/bipolar and continuous neurons. When the BAM neutrons are activated, the network quickly evolves to a stable state of two-pattern reverberation, or resonance. The stable reverberation corresponds to a system energy local minimum. Heteroassociative information is encoded in a BAM by summing correlation matrices. The BAM storage capacity for reliable recall is roughly m

1,863 citations


Journal ArticleDOI
Stephen Grossberg1Institutions (1)
01 Jan 1988-Neural Networks
TL;DR: An historical discussion is provided of the intellectual trends that caused nineteenth century interdisciplinary studies of physics and psychobiology by leading scientists such as Helmholtz, Maxwell, and Mach to splinter into separate twentieth-century scientific movements.
Abstract: An historical discussion is provided of the intellectual trends that caused nineteenth century interdisciplinary studies of physics and psychobiology by leading scientists such as Helmholtz, Maxwell, and Mach to splinter into separate twentieth-century scientific movements. The nonlinear, nonstationary, and nonlocal nature of behavioral and brain data are emphasized. Three sources of contemporary neural network research—the binary, linear, and continuous-nonlinear models—are noted. The remainder of the article describes results about continuous-nonlinear models: Many models of content-addressable memory are shown to be special cases of the Cohen-Grossberg model and global Liapunov function, including the additive, brain-state-in-a-box, McCulloch-Pitts, Boltzmann machine, Hartline-Ratliff-Miller, shunting, masking field, bidirectional associative memory, Volterra-Lotka, Gilpin-Ayala, and Eigen-Schuster models. A Liapunov functional method is described for proving global limit or oscillation theorems for nonlinear competitive systems when their decision schemes are globally consistent or inconsistent, respectively. The former case is illustrated by a model of a globally stable economic market, and the latter case is illustrated by a model of the voting paradox. Key properties of shunting competitive feedback networks are summarized, including the role of sigmoid signalling, automatic gain control, competitive choice and quantization, tunable filtering, total activity normalization, and noise suppression in pattern transformation and memory storage applications. Connections to models of competitive learning, vector quantization, and categorical perception are noted. Adaptive resonance theory (ART) models for self-stabilizing adaptive pattern recognition in response to complex real-time nonstationary input environments are compared with off-line models such as autoassociators, the Boltzmann machine, and back propagation. Special attention is paid to the stability and capacity of these models, and to the role of top-down expectations and attentional processing in the active regulation of both learning and fast information processing. Models whose performance and learning are regulated by internal gating and matching signals, or by external environmentally generated error signals, are contrasted with models whose learning is regulated by external teacher signals that have no analog in natural real-time environments. Examples from sensory-motor control of adaptive vector encoders, adaptive coordinate transformations, adaptive gain control by visual error signals, and automatic generation of synchronous multijoint movement trajectories illustrate the former model types. Internal matching processes are shown capable of discovering several different types of invariant environmental properties. These include ART mechanisms which discover recognition invariants, adaptive vector encoder mechanisms which discover movement invariants, and autoreceptive associative mechanisms which discover invariants of self-regulating target position maps.

1,541 citations


Journal ArticleDOI
Bart Kosko1Institutions (1)
01 Dec 1987-Applied Optics
TL;DR: The BAM correlation encoding scheme is extended to a general Hebbian learning law and every BAM adaptively resonates in the sense that all nodes and edges quickly equilibrate in a system energy local minimum.
Abstract: Bidirectionality, forward and backward information flow, is introduced in neural networks to produce two-way associative search for stored stimulus-response associations (A(i),B(i)). Two fields of neurons, F(A) and F(B), are connected by an n x p synaptic marix M. Passing information through M gives one direction, passing information through its transpose M(T) gives the other. Every matrix is bidirectionally stable for bivalent and for continuous neurons. Paired data (A(i),B(i)) are encoded in M by summing bipolar correlation matrices. The bidirectional associative memory (BAM) behaves as a two-layer hierarchy of symmetrically connected neurons. When the neurons in F(A) and F(B) are activated, the network quickly evolves to a stable state of twopattern reverberation, or pseudoadaptive resonance, for every connection topology M. The stable reverberation corresponds to a system energy local minimum. An adaptive BAM allows M to rapidly learn associations without supervision. Stable short-term memory reverberations across F(A) and F(B) gradually seep pattern information into the long-term memory connections M, allowing input associations (A(i),B(i)) to dig their own energy wells in the network state space. The BAM correlation encoding scheme is extended to a general Hebbian learning law. Then every BAM adaptively resonates in the sense that all nodes and edges quickly equilibrate in a system energy local minimum. A sampling adaptive BAM results when many more training samples are presented than there are neurons in F(B) and F(B), but presented for brief pulses of learning, not allowing learning to fully or nearly converge. Learning tends to improve with sample size. Sampling adaptive BAMs can learn some simple continuous mappings and can rapidly abstract bivalent associations from several noisy gray-scale samples.

1,013 citations


Journal ArticleDOI
01 Jan 1988-Nature
TL;DR: The features of a hologram that commend it as a model of associative memory can be improved on by other devices.
Abstract: The features of a hologram that commend it as a model of associative memory can be improved on by other devices.

941 citations


Network Information
Related Topics (5)
Artificial neural network

207K papers, 4.5M citations

85% related
Optimization problem

96.4K papers, 2.1M citations

79% related
Cluster analysis

146.5K papers, 2.9M citations

78% related
Support vector machine

73.6K papers, 1.7M citations

78% related
Nonlinear system

208.1K papers, 4M citations

77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
202135
202026
201930
201845
201748

Top Attributes

Show by:

Topic's top 5 most impactful authors

Jinde Cao

49 papers, 4.4K citations

Masafumi Hagiwara

25 papers, 350 citations

Sylvain Chartier

22 papers, 233 citations

Yuko Osana

18 papers, 143 citations

Masaki Kobayashi

11 papers, 125 citations