scispace - formally typeset
Search or ask a question
Topic

Bifidobacterium animalis

About: Bifidobacterium animalis is a research topic. Over the lifetime, 1154 publications have been published within this topic receiving 38065 citations. The topic is also known as: B. animalis.


Papers
More filters
Journal ArticleDOI
TL;DR: The bifidogenic effect of the prebiotic inulin is well established; however, it remains unclear which species of Bifidobacterium are stimulated in vivo and whether bacterial groups other than lactic acid bacteria are affected by inulin consumption.
Abstract: Prebiotics are food ingredients that improve health by modulating the colonic microbiota. The bifidogenic effect of the prebiotic inulin is well established; however, it remains unclear which species of Bifidobacterium are stimulated in vivo and whether bacterial groups other than lactic acid bacteria are affected by inulin consumption. Changes in the faecal microbiota composition were examined by real-time PCR in twelve human volunteers after ingestion of inulin (10 g/d) for a 16-d period in comparison with a control period without any supplement intake. The prevalence of most bacterial groups examined did not change after inulin intake, although the low G+C % Gram-positive species Faecalibacterium prausnitzii exhibited a significant increase (10.3% for control period v. 14.5% during inulin intake, P=0.019). The composition of the genus Bifidobacterium was studied in four of the volunteers by clone library analysis. Between three and five Bifidobacterium spp. were found in each volunteer. Bifidobacterium adolescentis and Bifidobacterium longum were present in all volunteers, and Bifidobacterium pseudocatenulatum, Bifidobacterium animalis, Bifidobacterium bifidum and Bifidobacterium dentium were also detected. Real-time PCR was employed to quantify the four most prevalent Bifidobacterium spp., B. adolescentis, B. longum, B. pseudocatenulatum and B. bifidum, in ten volunteers carrying detectable levels of bifidobacteria. B. adolescentis showed the strongest response to inulin consumption, increasing from 0.89 to 3.9% of the total microbiota (P=0.001). B. bifidum was increased from 0.22 to 0.63% (P<0.001) for the five volunteers for whom this species was present.

736 citations

Journal ArticleDOI
TL;DR: The results suggest that Lactobacillus and Bifidobacterium differentially attenuate obesity comorbidities in part through strain-specific impacts on MS-associated phylotypes of gut microbiota in mice.
Abstract: Structural disruption of gut microbiota and associated inflammation are considered important etiological factors in high fat diet (HFD)-induced metabolic syndrome (MS). Three candidate probiotic strains, Lactobacillus paracasei CNCM I-4270 (LC), L. rhamnosus I-3690 (LR) and Bifidobacterium animalis subsp. lactis I-2494 (BA), were individually administered to HFD-fed mice (10(8) cells day(-1)) for 12 weeks. Each strain attenuated weight gain and macrophage infiltration into epididymal adipose tissue and markedly improved glucose-insulin homeostasis and hepatic steatosis. Weighted UniFrac principal coordinate analysis based on 454 pyrosequencing of fecal bacterial 16S rRNA genes showed that the probiotic strains shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean mice fed a normal (chow) diet. Redundancy analysis revealed that abundances of 83 operational taxonomic units (OTUs) were altered by probiotics. Forty-nine altered OTUs were significantly correlated with one or more host MS parameters and were designated 'functionally relevant phylotypes'. Thirteen of the 15 functionally relevant OTUs that were negatively correlated with MS phenotypes were promoted, and 26 of the 34 functionally relevant OTUs that were positively correlated with MS were reduced by at least one of the probiotics, but each strain changed a distinct set of functionally relevant OTUs. LC and LR increased cecal acetate but did not affect circulating lipopolysaccharide-binding protein; in contrast, BA did not increase acetate but significantly decreased adipose and hepatic tumor necrosis factor-α gene expression. These results suggest that Lactobacillus and Bifidobacterium differentially attenuate obesity comorbidities in part through strain-specific impacts on MS-associated phylotypes of gut microbiota in mice.

693 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the early onset of HFD‐induced hyperglycemia is characterized by an increased bacterial translocation from intestine towards tissues, fuelling a continuous metabolic bacteremia, which could represent new therapeutic targets.
Abstract: A fat-enriched diet modifies intestinal microbiota and initiates a low-grade inflammation, insulin resistance and type-2 diabetes. Here, we demonstrate that before the onset of diabetes, after only one week of a high-fat diet (HFD), live commensal intestinal bacteria are present in large numbers in the adipose tissue and the blood where they can induce inflammation. This translocation is prevented in mice lacking the microbial pattern recognition receptors Nod1 or CD14, but overtly increased in Myd88 knockout and ob/ob mouse. This 'metabolic bacteremia' is characterized by an increased co-localization with dendritic cells from the intestinal lamina propria and by an augmented intestinal mucosal adherence of non-pathogenic Escherichia coli. The bacterial translocation process from intestine towards tissue can be reversed by six weeks of treatment with the probiotic strain Bifidobacterium animalis subsp. lactis 420, which improves the animals' overall inflammatory and metabolic status. Altogether, these data demonstrate that the early onset of HFD-induced hyperglycemia is characterized by an increased bacterial translocation from intestine towards tissues, fuelling a continuous metabolic bacteremia, which could represent new therapeutic targets.

676 citations

Journal ArticleDOI
TL;DR: The gut microbiota associated with human obesity is depleted in M. smithii, and gut microbiota composition at the species level is related to body weight and obesity, which might be of relevance for further studies and the management of obesity.
Abstract: Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii

561 citations

Journal ArticleDOI
TL;DR: The traditional use of bifidobacteria in fermented dairy products and the GRAS status of certain strains attest to their safety, and some strains show high gastrointestinal survival capacity and exhibit probiotic properties in the colon.
Abstract: Bifidobacteria, naturally present in the dominant colonic microbiota, represent up to 25% of the cultivable faecal bacteria in adults and 80% in infants. As probiotic agents, bifidobacteria have been studied for their efficacy in the prevention and treatment of a broad spectrum of animal and/or human gastrointestinal disorders, such as colonic transit disorders, intestinal infections, and colonic adenomas and cancer. The aim of this review is to focus on the gastrointestinal effects of bifidobacteria as probiotic agents in animal models and man. The traditional use of bifidobacteria in fermented dairy products and the GRAS ('Generally Recognised As Safe') status of certain strains attest to their safety. Some strains, especially Bifidobacterium animalis strain DN-173 010 which has long been used in fermented dairy products, show high gastrointestinal survival capacity and exhibit probiotic properties in the colon. Bifidobacteria are able to prevent or alleviate infectious diarrhoea through their effects on the immune system and resistance to colonization by pathogens. There is some experimental evidence that certain bifidobacteria may actually protect the host from carcinogenic activity of intestinal flora. Bifidobacteria may exert protective intestinal actions through various mechanisms, and represent promising advances in the fields of prophylaxis and therapy.

558 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
82% related
Gut flora
19.9K papers, 928.6K citations
82% related
Bacteria
23.6K papers, 715.9K citations
79% related
Antioxidant
37.9K papers, 1.7M citations
78% related
DPPH
30.1K papers, 759.9K citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202359
2022157
202198
202093
201994
201874