scispace - formally typeset
Search or ask a question
Topic

Bifurcation diagram

About: Bifurcation diagram is a research topic. Over the lifetime, 8379 publications have been published within this topic receiving 139664 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated the process of pattern formation in a two dimensional domain for a reaction-diffusion system with nonlinear diffusion terms and the competitive Lotka-Volterra kinetics.
Abstract: In this work we investigate the process of pattern formation in a two dimensional domain for a reaction–diffusion system with nonlinear diffusion terms and the competitive Lotka–Volterra kinetics. The linear stability analysis shows that cross-diffusion, through Turing bifurcation, is the key mechanism for the formation of spatial patterns. We show that the bifurcation can be regular, degenerate non-resonant and resonant. We use multiple scales expansions to derive the amplitude equations appropriate for each case and show that the system supports patterns like rolls, squares, mixed-mode patterns, supersquares, and hexagonal patterns.

104 citations

Journal ArticleDOI
TL;DR: In this article, a bidimensional continuous-time differential equations system is derived from Leslie type predator-prey schemes by considering a nonmonotonic functional response and Allee effect on population prey.
Abstract: In this work, a bidimensional continuous-time differential equations system is analyzed which is derived from Leslie type predator–prey schemes by considering a nonmonotonic functional response and Allee effect on population prey. For ecological reason, we describe the bifurcation diagram of limit cycles that appear only at the first quadrant in the system obtained. We also show that under certain conditions over the parameters, the system allows the existence of a stable limit cycle surrounding an unstable limit cycle generated by Hopf bifurcation. Furthermore, we give conditions over the parameters such that the model allows long-term extinction or survival of both populations.

103 citations

Journal ArticleDOI
TL;DR: In this article, the qualitative dynamics of two-parameter families of planar maps of the form F^e(x, y) = (y, -ex+f(y)), where f :R -> R is a C 3 map with a single critical point and negative Schwarzian derivative, are studied.
Abstract: We study the qualitative dynamics of two-parameter families of planar maps of the form F^e(x, y) = (y, -ex+f(y)), where f :R -> R is a C 3 map with a single critical point and negative Schwarzian derivative. The prototype of such maps is the family f(y) = u —y 2 or (in different coordinates) f(y) = Ay(1 —y), in which case F^ e is the Henon map. The maps F e have constant Jacobian determinant e and, as e -> 0, collapse to the family f^. The behaviour of such one-dimensional families is quite well understood, and we are able to use their bifurcation structures and information on their non-wandering sets to obtain results on both local and global bifurcations of F/ ue , for small e . Moreover, we are able to extend these results to the area preserving family F/u. 1 , thereby obtaining (partial) bifurcation sets in the (/u, e)-plane. Among our conclusions we find that the bifurcation sequence for periodic orbits, which is restricted by Sarkovskii’s theorem and the kneading theory for one-dimensional maps, is quite different for two-dimensional families. In particular, certain periodic orbits that appear at the end of the one-dimensional sequence appear at the beginning of the area preserving sequence, and infinitely many families of saddle node and period doubling bifurcation curves cross each other in the ( /u, e ) -parameter plane between e = 0 and e = 1. We obtain these results from a study of the homoclinic bifurcations (tangencies of stable and unstable manifolds) of F /u.e and of the associated sequences of periodic bifurcations that accumulate on them. We illustrate our results with some numerical computations for the orientation-preserving Henon map.

103 citations

Journal ArticleDOI
TL;DR: In this paper, results obtained from numerical simulations of the Euler equations with simple one-step Arrhenius kinetics are analyzed using basic nonlinear dynamics and chaos theory.
Abstract: To understand the nonlinear dynamical behaviour of a one-dimensional pulsating detonation, results obtained from numerical simulations of the Euler equations with simple one-step Arrhenius kinetics are analysed using basic nonlinear dynamics and chaos theory. To illustrate the transition pattern from a simple harmonic limit-cycle to a more complex irregular oscillation, a bifurcation diagram is constructed from the computational results. Evidence suggests that the route to higher instability modes may follow closely the Feigenbaum scenario of a period-doubling cascade observed in many generic nonlinear systems. Analysis of the one-dimensional pulsating detonation shows that the Feigenbaum number, defined as the ratio of intervals between successive bifurcations, appears to be in reasonable agreement with the universal value of d = 4.669. Using the concept of the largest Lyapunov exponent, the existence of chaos in a one-dimensional unsteady detonation is demonstrated.

103 citations

Journal ArticleDOI
TL;DR: A general explicit formula is derived for controlling bifurcations using nonlinear state feedback and it is shown that a simple control can be obtained to simultaneously stabilize two symmetrical equilibria of the Lorenz system, and keep the symmetry of Hopf bifURcations from the equilibaria.
Abstract: A general explicit formula is derived for controlling bifurcations using nonlinear state feedback. This method does not increase the dimension of the system, and can be used to either delay (or eliminate) existing bifurcations or change the stability of bifurcation solutions. The method is then employed for Hopf bifurcation control. The Lorenz equation and Rossler system are used to illustrate the application of the approach. It is shown that a simple control can be obtained to simultaneously stabilize two symmetrical equilibria of the Lorenz system, and keep the symmetry of Hopf bifurcations from the equilibria. For the Rossler system, a control is also obtained to simultaneously stabilize two nonsymmetric equilibria and meanwhile stabilize possible Hopf bifurcations from the equilibria. Computer simulation results are presented to confirm the analytical predictions.

103 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
89% related
Differential equation
88K papers, 2M citations
88% related
Partial differential equation
70.8K papers, 1.6M citations
88% related
Eigenvalues and eigenvectors
51.7K papers, 1.1M citations
85% related
Boundary value problem
145.3K papers, 2.7M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023122
2022326
2021187
2020195
2019166
2018220