scispace - formally typeset
Search or ask a question
Topic

Bifurcation diagram

About: Bifurcation diagram is a research topic. Over the lifetime, 8379 publications have been published within this topic receiving 139664 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the bifurcations of attracting cycles for a three-segment (bimodal) piecewise-linear continuous one-dimensional map were studied and exact formulas for the regions of periodicity of any rational rotation number (Arnold's tongues) were obtained in the associated three-dimensional parameter space.
Abstract: We study the bifurcations of attracting cycles for a three-segment (bimodal) piecewise-linear continuous one-dimensional map. Exact formulas for the regions of periodicity of any rational rotation number (Arnold’s tongues) are obtained in the associated three-dimensional parameter space. It is shown that the destruction of any Arnold’s tongue is a result of a border-collision bifurcation, and is followed by the appearance of a cycle of intervals with the same rotation number, whose dynamics is determined by a skew tent map. Finally, for the interval cycle the merging bifurcation corresponds to a homoclinic bifurcation of some point cycle.

82 citations

Journal ArticleDOI
07 Feb 2019-Entropy
TL;DR: This paper presents a non-equilibrium four-dimensional chaotic system with hidden attractors and investigates its dynamical behavior using a bifurcation diagram, as well as three well-known entropy measures, such as approximate entropy, sample entropy, and Fuzzy entropy.
Abstract: Today, four-dimensional chaotic systems are attracting considerable attention because of their special characteristics. This paper presents a non-equilibrium four-dimensional chaotic system with hidden attractors and investigates its dynamical behavior using a bifurcation diagram, as well as three well-known entropy measures, such as approximate entropy, sample entropy, and Fuzzy entropy. In order to stabilize the proposed chaotic system, an adaptive radial-basis function neural network (RBF-NN)-based control method is proposed to represent the model of the uncertain nonlinear dynamics of the system. The Lyapunov direct method-based stability analysis of the proposed approach guarantees that all of the closed-loop signals are semi-globally uniformly ultimately bounded. Also, adaptive learning laws are proposed to tune the weight coefficients of the RBF-NN. The proposed adaptive control approach requires neither the prior information about the uncertain dynamics nor the parameters value of the considered system. Results of simulation validate the performance of the proposed control method.

82 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered the Brezis-Nirenberg problem in dimension N⩾4 and proved that if the exponent gets close to N+2 N−2 and if simultaneously the bifurcation parameter tends to zero at the appropriate rate, then there are radial solutions which behave like a superposition of bubbles, namely solutions of the form γ ∑ j=1 k 1 1 1+M j 4 N− 2 |y| 2 (N−2)/2 M j (1+o(1)), γ=(N(

82 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the symmetry-breaking steady state bifurcation of a spatially-uniform equilibrium solution of E(2)-equivariant PDEs, and restrict the space of solutions to those that are doubly-periodic with respect to a square or hexagonal lattice.
Abstract: We consider the symmetry-breaking steady state bifurcation of a spatially-uniform equilibrium solution of E(2)-equivariant PDEs. We restrict the space of solutions to those that are doubly-periodic with respect to a square or hexagonal lattice, and consider the bifurcation problem restricted to a finite-dimensional center manifold. For the square lattice we assume that the kernel of the linear operator, at the bifurcation point, consists of 4 complex Fourier modes, with wave vectors K_1=(a,b), K_2=(-b,a), K_3=(b,a), and K_4=(-a,b), where a>b>0 are integers. For the hexagonal lattice, we assume that the kernel of the linear operator consists of 6 complex Fourier modes, also parameterized by an integer pair (a,b). We derive normal forms for the bifurcation problems, which we use to compute the linear, orbital stability of those solution branches guaranteed to exist by the equivariant branching lemma. These solutions consist of rolls, squares, hexagons, a countable set of rhombs, and a countable set of planforms that are superpositions of all of the Fourier modes in the kernel. Since rolls and squares (hexagons) are common to all of the bifurcation problems posed on square (hexagonal) lattices, this framework can be used to determine their stability relative to a countable set of perturbations by varying a and b. For the hexagonal lattice, we analyze the degenerate bifurcation problem obtained by setting the coefficient of the quadratic term to zero. The unfolding of the degenerate bifurcation problem reveals a new class of secondary bifurcations on the hexagons and rhombs solution branches.

82 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
89% related
Differential equation
88K papers, 2M citations
88% related
Partial differential equation
70.8K papers, 1.6M citations
88% related
Eigenvalues and eigenvectors
51.7K papers, 1.1M citations
85% related
Boundary value problem
145.3K papers, 2.7M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023122
2022326
2021187
2020195
2019166
2018220