scispace - formally typeset
Search or ask a question
Topic

Biharmonic equation

About: Biharmonic equation is a research topic. Over the lifetime, 3832 publications have been published within this topic receiving 57698 citations. The topic is also known as: biharmonic equation.


Papers
More filters
Book
19 Jun 1986
TL;DR: This paper presents the results of an analysis of the "Stream Function-Vorticity-Pressure" Method for the Stokes Problem in Two Dimensions and its applications to Mixed Approximation and Homogeneous Stokes Equations.
Abstract: I. Mathematical Foundation of the Stokes Problem.- 1. Generalities on Some Elliptic Boundary Value Problems.- 1.1. Basic Concepts on Sobolev Spaces.- 1.2. Abstract Elliptic Theory.- 1.3. Example 1: Dirichlet's Problem for the Laplace Operator.- 1.4. Example 2: Neumann's Problem for the Laplace Operator.- 1.5. Example 3: Dirichlet's Problem for the Biharmonic Operator.- 2. Function Spaces for the Stokes Problem.- 2.1. Preliminary Results.- 2.2. Some Properties of Spaces Related to the Divergence Operator.- 2.3. Some Properties of Spaces Related to the Curl Operator.- 3. A Decomposition of Vector Fields.- 3.1. Decomposition of Two-Dimensional Vector Fields.- 3.2. Application to the Regularity of Functions of H(div ?) ? H(curl ?).- 3.3. Decomposition of Three-Dimensional Vector Fields.- 3.4. The Imbedding of H(div ?) ? H0 (curl ?) into H1(?)3.- 3.5. The Imbedding of H0(div ?) ? H (curl ?) into H1(?)3.- 4. Analysis of an Abstract Variational Problem.- 4.1. A General Result.- 4.2. A Saddle-Point Approach.- 4.3. Approximation by Regularization or Penalty.- 4.4. Iterative Methods of Gradient Type.- 5. The Stokes Equations.- 5.1. The Dirichlet Problem in the Velocity-Pressure Formulation.- 5.2. The Stream Function Formulation of the Dirichlet Problem in Two Dimensions.- 5.3. The Three-Dimensional Case.- Appendix A. Results of Standard Finite Element Approximation.- A.l. Triangular Finite Elements.- A.2. Quadrilateral Finite Elements.- A.3. Interpolation of Discontinuous Functions.- II. Numerical Solution of the Stokes Problem in the Primitive Variables.- 1. General Approximation.- 1.1. An Abstract Approximation Result.- 1.2. Decoupling the Computation of uh and ?h.- 1.3. Application to the Homogeneous Stokes Problem.- 1.4. Checking the inf-sup Condition.- 2. Simplicial Finite Element Methods Using Discontinuous Pressures.- 2.1. A First Order Approximation on Triangular Elements.- 2.2. Higher-Order Approximation on Triangular Elements.- 2.3. The Three-Dimensional case: First and Higher-Order Schemes.- 3. Quadrilateral Finite Element Methods Using Discontinuous Pressures.- 3.1. A quadrilateral Finite Element of Order One.- 3.2. Higher-Order Quadrilateral Elements.- 3.3. An Example of Checkerboard Instability: the Q1 - P0 Element.- 3.4. Error Estimates for the Q1 - P0 Element.- 4. Continuous Approximation of the Pressure.- 4.1. A First Order Method: the "Mini" Finite Element.- 4.2. The "Hood-Taylor" Finite Element Method.- 4.3. The "Glowinski-Pironneau" Finite Element Method.- 4.4. Implementation of the Glowinski-Pironneau Scheme.- III. Incompressible Mixed Finite Element Methods for Solving the Stokes Problem.- 1. Mixed Approximation of an Abstract Problem.- 1.1. A Mixed Variational Problem.- 1.2. Abstract Mixed Approximation.- 2. The "Stream Function-Vorticity-Pressure" Method for the Stokes Problem in Two Dimensions.- 2.1. A Mixed Formulation.- 2.2. Mixed Approximation and Application to Finite Elements of Degree l.- 2.3. The Technique of Mesh-Dependent Norms.- 3. Further Topics on the "Stream Function-Vorticity-Pressure" Scheme.- 3.1. Refinement of the Error Analysis.- 3.2. Super Convergence Using Quadrilateral Finite Elements of Degree l.- 4. A "Stream Function-Gradient of Velocity Tensor" Method in Two Dimensions.- 4.1. The Hellan-Herrmann-Johnson Formulation.- 4.2. Approximation with Triangular Finite Elements of Degree l.- 4.3. Additional Results for the Hellan-Herrmann-Johnson Scheme.- 4.4. Discontinuous Approximation of the Pressure.- 5. A "Vector Potential-Vorticity" Scheme in Three Dimensions.- 5.1. A Mixed Formulation of the Three-Dimensional Stokes Problem.- 5.2. Mixed Approximation in H(curl ?).- 5.3. A Family of Conforming Finite Elements in H(curl ?).- 5.4. Error Analysis for Finite Elements of Degree l.- 5.5. Discontinuous Approximation of the Pressure.- IV. Theory and Approximation of the Navier-Stokes Problem.- 1. A Class of Nonlinear Problems.- s Problem for the Laplace Operator.- 1.5. Example 3: Dirichlet's Problem for the Biharmonic Operator.- 2. Function Spaces for the Stokes Problem.- 2.1. Preliminary Results.- 2.2. Some Properties of Spaces Related to the Divergence Operator.- 2.3. Some Properties of Spaces Related to the Curl Operator.- 3. A Decomposition of Vector Fields.- 3.1. Decomposition of Two-Dimensional Vector Fields.- 3.2. Application to the Regularity of Functions of H(div ?) ? H(curl ?).- 3.3. Decomposition of Three-Dimensional Vector Fields.- 3.4. The Imbedding of H(div ?) ? H0 (curl ?) into H1(?)3.- 3.5. The Imbedding of H0(div ?) ? H (curl ?) into H1(?)3.- 4. Analysis of an Abstract Variational Problem.- 4.1. A General Result.- 4.2. A Saddle-Point Approach.- 4.3. Approximation by Regularization or Penalty.- 4.4. Iterative Methods of Gradient Type.- 5. The Stokes Equations.- 5.1. The Dirichlet Problem in the Velocity-Pressure Formulation.- 5.2. The Stream Function Formulation of the Dirichlet Problem in Two Dimensions.- 5.3. The Three-Dimensional Case.- Appendix A. Results of Standard Finite Element Approximation.- A.l. Triangular Finite Elements.- A.2. Quadrilateral Finite Elements.- A.3. Interpolation of Discontinuous Functions.- II. Numerical Solution of the Stokes Problem in the Primitive Variables.- 1. General Approximation.- 1.1. An Abstract Approximation Result.- 1.2. Decoupling the Computation of uh and ?h.- 1.3. Application to the Homogeneous Stokes Problem.- 1.4. Checking the inf-sup Condition.- 2. Simplicial Finite Element Methods Using Discontinuous Pressures.- 2.1. A First Order Approximation on Triangular Elements.- 2.2. Higher-Order Approximation on Triangular Elements.- 2.3. The Three-Dimensional case: First and Higher-Order Schemes.- 3. Quadrilateral Finite Element Methods Using Discontinuous Pressures.- 3.1. A quadrilateral Finite Element of Order One.- 3.2. Higher-Order Quadrilateral Elements.- 3.3. An Example of Checkerboard Instability: the Q1 - P0 Element.- 3.4. Error Estimates for the Q1 - P0 Element.- 4. Continuous Approximation of the Pressure.- 4.1. A First Order Method: the "Mini" Finite Element.- 4.2. The "Hood-Taylor" Finite Element Method.- 4.3. The "Glowinski-Pironneau" Finite Element Method.- 4.4. Implementation of the Glowinski-Pironneau Scheme.- III. Incompressible Mixed Finite Element Methods for Solving the Stokes Problem.- 1. Mixed Approximation of an Abstract Problem.- 1.1. A Mixed Variational Problem.- 1.2. Abstract Mixed Approximation.- 2. The "Stream Function-Vorticity-Pressure" Method for the Stokes Problem in Two Dimensions.- 2.1. A Mixed Formulation.- 2.2. Mixed Approximation and Application to Finite Elements of Degree l.- 2.3. The Technique of Mesh-Dependent Norms.- 3. Further Topics on the "Stream Function-Vorticity-Pressure" Scheme.- 3.1. Refinement of the Error Analysis.- 3.2. Super Convergence Using Quadrilateral Finite Elements of Degree l.- 4. A "Stream Function-Gradient of Velocity Tensor" Method in Two Dimensions.- 4.1. The Hellan-Herrmann-Johnson Formulation.- 4.2. Approximation with Triangular Finite Elements of Degree l.- 4.3. Additional Results for the Hellan-Herrmann-Johnson Scheme.- 4.4. Discontinuous Approximation of the Pressure.- 5. A "Vector Potential-Vorticity" Scheme in Three Dimensions.- 5.1. A Mixed Formulation of the Three-Dimensional Stokes Problem.- 5.2. Mixed Approximation in H(curl ?).- 5.3. A Family of Conforming Finite Elements in H(curl ?).- 5.4. Error Analysis for Finite Elements of Degree l.- 5.5. Discontinuous Approximation of the Pressure.- IV. Theory and Approximation of the Navier-Stokes Problem.- 1. A Class of Nonlinear Problems.- 2. Theory of the Steady-State Navier-Stokes Equations.- 2.1. The Dirichlet Problem in the Velocity-Pressure Formulation.- 2.2. The Stream Function Formulation of the Homogeneous Problem..- 3. Approximation of Branches of Nonsingular Solutions.- 3.1. An Abstract Framework.- 3.2. Approximation of Branches of Nonsingular Solutions.- 3.3. Application to a Class of Nonlinear Problems.- 3.4. Non-Differentiable Approximation of Branches of Nonsingular Solutions.- 4. Numerical Analysis of Centered Finite Element Schemes.- 4.1. Formulation in Primitive Variables: Methods Using Discontinuous Pressures.- 4.2. Formulation in Primitive Variables: the Case of Continuous Pressures.- 4.3. Mixed Incompressible Methods: the "Stream Function-Vorticity" Formulation.- 4.4. Remarks on the "Stream Function-Gradient of Velocity Tensor" Scheme.- 5. Numerical Analysis of Upwind Schemes.- 5.1. Upwinding in the Stream Function-Vorticity Scheme.- 5.2. Error Analysis of the Upwind Scheme.- 5.3. Approximating the Pressure with the Upwind Scheme.- 6. Numerical Algorithms.- 2.11. General Methods of Descent and Application to Gradient Methods.- 2.12. Least-Squares and Gradient Methods to Solve the Navier-Stokes Equations.- 2.13. Newton's Method and the Continuation Method.- References.- Index of Mathematical Symbols.

5,572 citations

Journal ArticleDOI
TL;DR: In this paper, the elastic field outside an ellipsoidal inclusion or inhomogeneity may be expressed entirely in terms of the harmonic potential of a solid elliptipsoid.
Abstract: The results of an earlier paper are extended. The elastic field outside an inclusion or inhomogeneity is treated in greater detail. For a general inclusion the harmonic potential of a certain surface distribution may be used in place of the biharmonic potential used previously. The elastic field outside an ellipsoidal inclusion or inhomogeneity may be expressed entirely in terms of the harmonic potential of a solid ellipsoid. The solution gives incidentally the velocity field about an ellipsoid which is deforming homogeneously in a viscous fluid. An expression given previously for the strain energy of an ellipsoidal region which has undergone a shear transformation is generalized to the case where the region has elastic constants different from those of its surroundings. The Appendix outlines a general method of calculating biharmonic potentials.

1,323 citations

Book
01 Dec 1992
TL;DR: The Dirichlet Problem and Boundary Behavior of Harmonic Function Theory and Mathematica are discussed in this article, where the authors present a symbol index for harmonic function theory and mathematica.
Abstract: * Basic Properties of Harmonic Functions * Bounded Harmonic Functions * Positive Harmonic Functions * The Kelvin Transform * Harmonic Polynomials * Harmonic Hardy Spaces * Harmonic Functions on Half-Spaces * Harmonic Bergman Spaces * The Decomposition Theorem * Annular Regions * The Dirichlet Problem and Boundary Behavior * Volume, Surface Area, and Integration on Spheres * Harmonic Function Theory and Mathematica * References * Symbol Index * Index

1,241 citations

Book
17 Jan 2012
TL;DR: In this paper, the authors present an extension of the Dirichlet problem for the case of Perforated Domains with a Non-Periodic Structure, where the boundary value problem is solved with Neumann conditions on the outer part of the boundary and on the surface of the Cavities.
Abstract: Some Mathematical Problems of the Theory of Elasticity. Some Functional Spaces and Their Properties. Auxiliary Propositions. Korn's Inequalities. Boundary Value Problems of Linear Elasticity. Perforated Domains with a Periodic Structure. Extension Theorems. Estimates for Solutions of Boundary Value Problems of Elasticity in Perforated Domains. Periodic Solutions of Boundary Value Problems for the System of Elasticity. Saint-Venant's Principle for Periodic Solutions of the Elasticity System. Estimates and Existence Theorems for Solutions of the Elasticity System in Unbounded Domains. Strong G -Convergence of Elasticity Operators. Homogenization of the System of Linear Elasticity. Composites and Perforated Materials. The Mixed Problem in a Perforated Domain with the Dirichlet Boundary Conditions on the Outer Part of the Boundary and the Neumann Conditions on the Surface of the Cavities. The Boundary Value Problem with Neumann Conditions in a Perforated Domain. Asymptotic Expansions for Solutions of Boundary Value Problems of Elasticity in a Perforated Layer. Asymptotic Expansions for Solutions of the Dirichlet Problem for the Elasticity System in a Perforated Domain. Asymptotic Expansions for Solutions of the Dirichlet Problem for the Biharmonic Equation. Some Generalizations for the Case of Perforated Domains with a Non-Periodic Structure. Homogenization of the System of Elasticity with Almost-Periodic Coefficients. Homogenization of Stratified Structures. Estimates for the Rate of G -Convergence of Higher-Order Elliptic Operators. Spectral Problems . Some Theorems from Functional Analysis. Spectral Problems for Abstract Operators. Homogenization of Eigenvalues and Eigenfunctions of Boundary Value Problems for Strongly Non-Homogeneous Elastic Bodies. On the Behaviour of Eigenvalues and Eigenfunctions of the Dirichlet Problem for Second Order Elliptic Equations in Perforated Domains. Third Boundary Value Problem for Second Order Elliptic Equations in Domains with Rapidly Oscillating Boundary. Free Vibrations of Bodies with Concentrated Masses. On the Behaviour of Eigenvalues of the Dirchlet Problem in Domains with Cavities Whose Concentration is Small. Homogenization of Eigenvalues of Ordinary Differential Operators. Asymptotic Expansion of Eigenvalues and Eigenfunctions of the Sturm-Liouville Problem for Equations with Rapidly Oscillating Coefficients. On the Behaviour of the Eigenvalues and Eigenfunctions of a G -Convergent Sequence of Non-Self-Adjoint Operators. References.

838 citations


Network Information
Related Topics (5)
Partial differential equation
70.8K papers, 1.6M citations
90% related
Boundary value problem
145.3K papers, 2.7M citations
87% related
Differential equation
88K papers, 2M citations
86% related
Boundary (topology)
72.8K papers, 1.1M citations
85% related
Bounded function
77.2K papers, 1.3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023130
2022277
2021205
2020193
2019189
2018189