scispace - formally typeset
Search or ask a question
Topic

Bimorph

About: Bimorph is a research topic. Over the lifetime, 3339 publications have been published within this topic receiving 51880 citations.


Papers
More filters
Patent
26 Sep 1996
TL;DR: The ink-jet print head of as discussed by the authors has a nozzle plate with an orifice connecting with an ink-containing chamber, and the bottom of the chamber is formed by a laminated actuator element that is electrically excited and causes pressure to be applied to the fluid.
Abstract: The ink-jet print head 1 has a nozzle plate 2 with an orifice 5 that connects with an ink containing chamber 4 . The underside of the chamber is formed by a laminated actuator element 3 that is electrically excited and causes pressure to be applied to the fluid. The top surface is in the form of a flexible diaphragm and the lower elements 6 are of glass or silicon. Between these elements is a piezo-electric bimorph construction 7 that when energised causes a deflection to occur and so produces the ink-jet action.

241 citations

Journal ArticleDOI
TL;DR: In this article, the moonie transducers were modified systematically by using finite element analysis combined with experimental techniques, and a new transducer design was developed with larger displacement, larger generative forces, and more cost-effective manufacturing.
Abstract: This paper presents original results obtained in the development of the moonie-type transducers for actuator applications. The moonie-type actuators fill the gap between multilayer and bimorph actuators, but its position-dependent displacement and low generative force are unacceptable for certain applications. The moonie transducers were modified systematically by using finite element analysis combined with experimental techniques. A new transducer design, named "cymbal transducer", was developed with larger displacement, larger generative forces, and more cost-effective manufacturing. The cymbal transducers consist of a cylindrical ceramic element sandwiched between two truncated conical metal endcaps and can be used as both sensors and actuators. The cymbal actuator exhibits almost 40 times higher displacement than the same size of ceramic element. Effective piezoelectric charge coefficient, Eff. d/sub 33/, of cymbal is roughly 40 times higher than PZT itself.

241 citations

Journal ArticleDOI
TL;DR: Calculation results on four unimorph actuators indicate that the use of stiffer elastic material is preferred to increase electromechanical coupling and output mechanical energy in unimorph automaton actuators.
Abstract: Electromechanical coupling mechanisms in piezoelectric bending actuators are discussed in this paper based on the constitutive equations of cantilever bimorph and unimorph actuators. Three actuator characteristic parameters, (e.g., electromechanical coupling coefficient, maximum energy transmission coefficient, and maximum mechanical output energy) are discussed for cantilever bimorph and unimorph actuators. In the case of the bimorph actuator, if the effect of the bonding layer is negligible, these parameters are directly related to the transverse coupling factor lest. In the case of the unimorph actuator, these parameters also depend on the Young's modulus and the thickness of the elastic layer. Maximum values for these parameters can be obtained by choosing proper thickness ratio and Young's modulus ratio of elastic and piezoelectric layers. Calculation results on four unimorph actuators indicate that the use of stiffer elastic material is preferred to increase electromechanical coupling and output mechanical energy in unimorph actuators.

236 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose and experimentally validate a first-principles based model for the nonlinear piezoelectric response of an electroelastic energy harvester.
Abstract: We propose and experimentally validate a first-principles based model for the nonlinear piezoelectric response of an electroelastic energy harvester The analysis herein highlights the importance of modeling inherent piezoelectric nonlinearities that are not limited to higher order elastic effects but also include nonlinear coupling to a power harvesting circuit Furthermore, a nonlinear damping mechanism is shown to accurately restrict the amplitude and bandwidth of the frequency response The linear piezoelectric modeling framework widely accepted for theoretical investigations is demonstrated to be a weak presumption for near-resonant excitation amplitudes as low as 05 g in a prefabricated bimorph whose oscillation amplitudes remain geometrically linear for the full range of experimental tests performed (never exceeding 025% of the cantilever overhang length) Nonlinear coefficients are identified via a nonlinear least-squares optimization algorithm that utilizes an approximate analytic solution obta

228 citations

Journal ArticleDOI
TL;DR: In this paper, the nonlinear electromechanical behavior of cantilevered piezoelectric ceramic bimorph, unimorph, and reduced and internally biased oxide wafer actuators is studied in a wide electric field and frequency range.
Abstract: The nonlinear electromechanical behavior of cantilevered piezoelectric ceramic bimorph, unimorph, and reduced and internally biased oxide wafer actuators is studied in a wide electric field and frequency range. It is found that under quasistatic condition, linear relationships between actuator tip displacement-electric field, and blocking force-electric field are only valid under weak field driving. With increasing the driving field, electromechanical nonlinearity begins to contribute significantly to the actuator performance because of ferroelectric hysteresis behavior associated with piezoelectric lead zirconate titanate (PZT)-type ceramic materials. The bending resonance frequencies of all these actuators vary with the magnitude of the electric field. The decrease of resonance frequency with electric field is explained by the increase of elastic compliance of PZT ceramic due to elastic nonlinearity. Mechanical quality factors of the actuators also depend on the magnitude of electric field strength. No significant temperature increase is observed when actuators are driven near resonance frequency under high electric field.

225 citations


Network Information
Related Topics (5)
Wafer
118K papers, 1.1M citations
79% related
Thin film
275.5K papers, 4.5M citations
78% related
Silicon
196K papers, 3M citations
78% related
Chemical vapor deposition
69.7K papers, 1.3M citations
77% related
Optical fiber
167K papers, 1.8M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202358
2022116
202191
202090
2019123
2018117