Topic

# Binary image

About: Binary image is a research topic. Over the lifetime, 26227 publications have been published within this topic receiving 405218 citations.

##### Papers published on a yearly basis

##### Papers

More filters

•

03 Oct 1988TL;DR: This chapter discusses two Dimensional Systems and Mathematical Preliminaries and their applications in Image Analysis and Computer Vision, as well as image reconstruction from Projections and image enhancement.

Abstract: Introduction. 1. Two Dimensional Systems and Mathematical Preliminaries. 2. Image Perception. 3. Image Sampling and Quantization. 4. Image Transforms. 5. Image Representation by Stochastic Models. 6. Image Enhancement. 7. Image Filtering and Restoration. 8. Image Analysis and Computer Vision. 9. Image Reconstruction From Projections. 10. Image Data Compression.

8,504 citations

••

TL;DR: A technique for image encoding in which local operators of many scales but identical shape serve as the basis functions, which tends to enhance salient image features and is well suited for many image analysis tasks as well as for image compression.

Abstract: We describe a technique for image encoding in which local operators of many scales but identical shape serve as the basis functions. The representation differs from established techniques in that the code elements are localized in spatial frequency as well as in space. Pixel-to-pixel correlations are first removed by subtracting a lowpass filtered copy of the image from the image itself. The result is a net data compression since the difference, or error, image has low variance and entropy, and the low-pass filtered image may represented at reduced sample density. Further data compression is achieved by quantizing the difference image. These steps are then repeated to compress the low-pass image. Iteration of the process at appropriately expanded scales generates a pyramid data structure. The encoding process is equivalent to sampling the image with Laplacian operators of many scales. Thus, the code tends to enhance salient image features. A further advantage of the present code is that it is well suited for many image analysis tasks as well as for image compression. Fast algorithms are described for coding and decoding.

6,975 citations

•

01 Dec 2003

TL;DR: 1. Fundamentals of Image Processing, 2. Intensity Transformations and Spatial Filtering, and 3. Frequency Domain Processing.

Abstract: 1. Introduction. 2. Fundamentals. 3. Intensity Transformations and Spatial Filtering. 4. Frequency Domain Processing. 5. Image Restoration. 6. Color Image Processing. 7. Wavelets. 8. Image Compression. 9. Morphological Image Processing. 10. Image Segmentation. 11. Representation and Description. 12. Object Recognition.

6,306 citations

••

TL;DR: The embedded zerotree wavelet algorithm (EZW) is a simple, yet remarkably effective, image compression algorithm, having the property that the bits in the bit stream are generated in order of importance, yielding a fully embedded code.

Abstract: The embedded zerotree wavelet algorithm (EZW) is a simple, yet remarkably effective, image compression algorithm, having the property that the bits in the bit stream are generated in order of importance, yielding a fully embedded code The embedded code represents a sequence of binary decisions that distinguish an image from the "null" image Using an embedded coding algorithm, an encoder can terminate the encoding at any point thereby allowing a target rate or target distortion metric to be met exactly Also, given a bit stream, the decoder can cease decoding at any point in the bit stream and still produce exactly the same image that would have been encoded at the bit rate corresponding to the truncated bit stream In addition to producing a fully embedded bit stream, the EZW consistently produces compression results that are competitive with virtually all known compression algorithms on standard test images Yet this performance is achieved with a technique that requires absolutely no training, no pre-stored tables or codebooks, and requires no prior knowledge of the image source The EZW algorithm is based on four key concepts: (1) a discrete wavelet transform or hierarchical subband decomposition, (2) prediction of the absence of significant information across scales by exploiting the self-similarity inherent in images, (3) entropy-coded successive-approximation quantization, and (4) universal lossless data compression which is achieved via adaptive arithmetic coding >

5,559 citations

•

01 Jan 1993

TL;DR: The digitized image and its properties are studied, including shape representation and description, and linear discrete image transforms, and texture analysis.

Abstract: List of Algorithms. Preface. Possible Course Outlines. 1. Introduction. 2. The Image, Its Representations and Properties. 3. The Image, Its Mathematical and Physical Background. 4. Data Structures for Image Analysis. 5. Image Pre-Processing. 6. Segmentation I. 7. Segmentation II. 8. Shape Representation and Description. 9. Object Recognition. 10. Image Understanding. 11. 3d Geometry, Correspondence, 3d from Intensities. 12. Reconstruction from 3d. 13. Mathematical Morphology. 14. Image Data Compression. 15. Texture. 16. Motion Analysis. Index.

5,451 citations