scispace - formally typeset
Search or ask a question
Topic

Binary search algorithm

About: Binary search algorithm is a research topic. Over the lifetime, 1959 publications have been published within this topic receiving 37447 citations. The topic is also known as: half-interval search & logarithmic search.


Papers
More filters
Journal ArticleDOI
TL;DR: A new optimization algorithm based on the law of gravity and mass interactions is introduced and the obtained results confirm the high performance of the proposed method in solving various nonlinear functions.

5,501 citations

Journal Article
TL;DR: A real-coded crossover operator is developed whose search power is similar to that of the single-point crossover used in binary-coded GAs, and SBX is found to be particularly useful in problems having mult ip le optimal solutions with a narrow global basin where the lower and upper bo unds of the global optimum are not known a priori.
Abstract: Abst ract . T he success of binary-coded gene t ic algorithms (GA s) in problems having discrete sear ch space largely depends on the coding used to represent the prob lem var iables and on the crossover ope ra tor that propagates buildin g blocks from parent strings to children st rings . In solving optimization problems having continuous search space, binary-coded GAs discr et ize the search space by using a coding of the problem var iables in binary strings. However , t he coding of realvalued vari ables in finit e-length st rings causes a number of difficulties: inability to achieve arbit rary pr ecision in the obtained solution , fixed mapping of problem var iab les, inh eren t Hamming cliff problem associated wit h binary coding, and processing of Holland 's schemata in cont inuous search space. Although a number of real-coded GAs are developed to solve optimization problems having a cont inuous search space, the search powers of these crossover operators are not adequate . In t his paper , t he search power of a crossover operator is defined in terms of the probability of creating an arbitrary child solut ion from a given pair of parent solutions . Motivated by the success of binarycoded GAs in discrete search space problems , we develop a real-coded crossover (which we call the simulated binar y crossover , or SBX) operator whose search power is similar to that of the single-point crossover used in binary-coded GAs . Simulation results on a nu mber of realvalued test problems of varying difficulty and dimensionality suggest t hat the real-cod ed GAs with the SBX operator ar e ab le to perfor m as good or bet ter than binary-cod ed GAs wit h the single-po int crossover. SBX is found to be particularly useful in problems having mult ip le optimal solutions with a narrow global basin an d in prob lems where the lower and upper bo unds of the global optimum are not known a priori. Further , a simulation on a two-var iable blocked function shows that the real-coded GA with SBX work s as suggested by Goldberg

2,702 citations

Journal ArticleDOI
TL;DR: Simulation results show that the proposed 4SS performs better than the well-known three- step search and has similar performance to the new three-step search (N3SS) in terms of motion compensation errors.
Abstract: Based on the real world image sequence's characteristic of center-biased motion vector distribution, a new four-step search (4SS) algorithm with center-biased checking point pattern for fast block motion estimation is proposed in this paper. A halfway-stop technique is employed in the new algorithm with searching steps of 2 to 4 and the total number of checking points is varied from 17 to 27. Simulation results show that the proposed 4SS performs better than the well-known three-step search and has similar performance to the new three-step search (N3SS) in terms of motion compensation errors. In addition, the 4SS also reduces the worst-case computational requirement from 33 to 27 search points and the average computational requirement from 21 to 19 search points, as compared with N3SS.

1,619 citations

Journal ArticleDOI
TL;DR: A binary version of the gravitational search algorithm, based on the law of gravity and mass interactions, is introduced and the experimental results confirm the efficiency of the BGSA in solving various nonlinear benchmark functions.
Abstract: Gravitational search algorithm is one of the new optimization algorithms that is based on the law of gravity and mass interactions. In this algorithm, the searcher agents are a collection of masses, and their interactions are based on the Newtonian laws of gravity and motion. In this article, a binary version of the algorithm is introduced. To evaluate the performances of the proposed algorithm, several experiments are performed. The experimental results confirm the efficiency of the BGSA in solving various nonlinear benchmark functions.

702 citations

Journal ArticleDOI
TL;DR: A novel unrestricted center-biased diamond search (UCBDS) algorithm is proposed which is more efficient, effective, and robust than the previous techniques and consistently faster than the other suboptimal block-matching techniques.
Abstract: The widespread use of block-based interframe motion estimation for video sequence compression in both MPEG and H.263 standards is due to its effectiveness and simplicity of implementation. Nevertheless, the high computational complexity of the full-search algorithm has motivated a host of suboptimal but faster search strategies. A popular example is the three-step search (TSS) algorithm. However, its uniformly spaced search pattern is not well matched to most real-world video sequences in which the motion vector distribution is nonuniformly biased toward the zero vector. Such an observation inspired the new three-step search (NTSS) which has a center-biased search pattern and supports a halfway-stop technique. It is faster on average, and gives better motion estimation as compared to the well-known TSS. Later, the four-step search (4SS) algorithm was introduced to reduce the average case from 21 to 19 search points, while maintaining a performance similar to NTSS in terms of motion compensation errors. We propose a novel unrestricted center-biased diamond search (UCBDS) algorithm which is more efficient, effective, and robust than the previous techniques. It has a best case scenario of only 13 search points and an average of 15.5 block matches. This makes UCBDS consistently faster than the other suboptimal block-matching techniques. This paper also compares the above methods in which both the processing speed and the accuracy of motion compensation are tested over a wide range of test video sequences.

680 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
85% related
Network packet
159.7K papers, 2.2M citations
85% related
Wireless sensor network
142K papers, 2.4M citations
84% related
Node (networking)
158.3K papers, 1.7M citations
84% related
Wireless network
122.5K papers, 2.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202310
202225
202164
202080
201977
201867