Topic

# Binary system

About: Binary system is a(n) research topic. Over the lifetime, 5788 publication(s) have been published within this topic receiving 97882 citation(s).

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this paper, a range of values of the binary eccentricity and mass ratio is studied, and both the case of planets orbiting close to one of the stars, and that of planets outside the binary orbiting the systems center of mass, are examined.

Abstract: A simple question of celestial mechanics is investigated: in what regions of phase space near a binary system can planets persist for long times? The planets are taken to be test particles moving in the field of an eccentric binary system. A range of values of the binary eccentricity and mass ratio is studied, and both the case of planets orbiting close to one of the stars, and that of planets outside the binary orbiting the systems center of mass, are examined. From the results, empirical expressions are developed for both (1) the largest orbit around each of the stars and (2) the smallest orbit around the binary system as a whole, in which test particles survive the length of the integration (10A4 binary periods). The empirical expressions developed, which are roughly linear in both the mass ratio mu and the binary eccentricity e, are determined for the range 0.0=e=0.7-0.8 and 0.1=mu=0.9 in both regions and can be used to guide searches for planets in binary systems. After considering the case of a single low-mass planet in binary systems, the stability of a mutually interacting system of planets orbiting one star of a binary system is examined, though in less detail.

828 citations

••

TL;DR: In this paper, a Henyey-type stellar evolution code was modified to allow its application to binary stellar evolution calculations, making it possible to trace the effects of mass and angular momentum loss from the binary, as well as mass transfer within the binary system.

Abstract: The way in which binary interaction affects the presupernova evolution of massive close binaries and the resulting supernova explosions is investigated systematically by means of a Henyey-type stellar evolution code that was modified to allow its application to binary stellar evolution calculations. The code makes it possible to trace the effects of mass and angular momentum loss from the binary, as well as mass transfer within the binary system. It is found that a large number of binary scenarios can be distinguished, depending on the type of binary interaction and the evolutionary stage of the supernova progenitor at the time of the interaction. Monte Carlo simulations are performed to estimate the frequencies of the occurrence of various scenarios. It is found that, because of a previous binary interaction, 15-30 percent of all massive stars (with initial masses greater than about 8 solar masses) become helium stars, and another 5 percent of all massive stars end their lives as blue supergiants rather than as red supergiants.

614 citations

01 Sep 1996

TL;DR: In this paper, a range of values of the binary eccentricity and mass ratio is studied, and both the case of planets orbiting close to one of the stars, and that of planets outside the binary orbiting the systems center of mass, are examined.

Abstract: A simple question of celestial mechanics is investigated: in what regions of phase space near a binary system can planets persist for long times? The planets are taken to be test particles moving in the field of an eccentric binary system. A range of values of the binary eccentricity and mass ratio is studied, and both the case of planets orbiting close to one of the stars, and that of planets outside the binary orbiting the systems center of mass, are examined. From the results, empirical expressions are developed for both (1) the largest orbit around each of the stars and (2) the smallest orbit around the binary system as a whole, in which test particles survive the length of the integration (10A4 binary periods). The empirical expressions developed, which are roughly linear in both the mass ratio mu and the binary eccentricity e, are determined for the range 0.0=e=0.7-0.8 and 0.1=mu=0.9 in both regions and can be used to guide searches for planets in binary systems. After considering the case of a single low-mass planet in binary systems, the stability of a mutually interacting system of planets orbiting one star of a binary system is examined, though in less detail.

559 citations

••

TL;DR: Diagramme de phases du systeme PEO-eau calcule en utilisant la theorie de Flory; accord semi-quantitatif avec l'experience as discussed by the authors.

Abstract: Diagramme de phases du systeme PEO-eau calcule en utilisant la theorie de Flory; accord semi-quantitatif avec l'experience

502 citations