scispace - formally typeset
Topic

Bioaccumulation

About: Bioaccumulation is a(n) research topic. Over the lifetime, 7112 publication(s) have been published within this topic receiving 208953 citation(s). The topic is also known as: bioakumulace.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: There is little doubt that measurements of bioaccumulation and biomarker responses in fish from contaminated sites offer great promises for providing information that can contribute to environmental monitoring programs designed for various aspects of ERA.
Abstract: In this review, a wide array of bioaccumulation markers and biomarkers, used to demonstrate exposure to and effects of environmental contaminants, has been discussed in relation to their feasibility in environmental risk assessment (ERA). Fish bioaccumulation markers may be applied in order to elucidate the aquatic behavior of environmental contaminants, as bioconcentrators to identify certain substances with low water levels and to assess exposure of aquatic organisms. Since it is virtually impossible to predict the fate of xenobiotic substances with simple partitioning models, the complexity of bioaccumulation should be considered, including toxicokinetics, metabolism, biota-sediment accumulation factors (BSAFs), organ-specific bioaccumulation and bound residues. Since it remains hard to accurately predict bioaccumulation in fish, even with highly sophisticated models, analyses of tissue levels are required. The most promising fish bioaccumulation markers are body burdens of persistent organic pollutants, like PCBs and DDTs. Since PCDD and PCDF levels in fish tissues are very low as compared with the sediment levels, their value as bioaccumulation markers remains questionable. Easily biodegradable compounds, such as PAHs and chlorinated phenols, do not tend to accumulate in fish tissues in quantities that reflect the exposure. Semipermeable membrane devices (SPMDs) have been successfully used to mimic bioaccumulation of hydrophobic organic substances in aquatic organisms. In order to assess exposure to or effects of environmental pollutants on aquatic ecosystems, the following suite of fish biomarkers may be examined: biotransformation enzymes (phase I and II), oxidative stress parameters, biotransformation products, stress proteins, metallothioneins (MTs), MXR proteins, hematological parameters, immunological parameters, reproductive and endocrine parameters, genotoxic parameters, neuromuscular parameters, physiological, histological and morphological parameters. All fish biomarkers are evaluated for their potential use in ERA programs, based upon six criteria that have been proposed in the present paper. This evaluation demonstrates that phase I enzymes (e.g. hepatic EROD and CYP1A), biotransformation products (e.g. biliary PAH metabolites), reproductive parameters (e.g. plasma VTG) and genotoxic parameters (e.g. hepatic DNA adducts) are currently the most valuable fish biomarkers for ERA. The use of biomonitoring methods in the control strategies for chemical pollution has several advantages over chemical monitoring. Many of the biological measurements form the only way of integrating effects on a large number of individual and interactive processes in aquatic organisms. Moreover, biological and biochemical effects may link the bioavailability of the compounds of interest with their concentration at target organs and intrinsic toxicity. The limitations of biomonitoring, such as confounding factors that are not related to pollution, should be carefully considered when interpreting biomarker data. Based upon this overview there is little doubt that measurements of bioaccumulation and biomarker responses in fish from contaminated sites offer great promises for providing information that can contribute to environmental monitoring programs designed for various aspects of ERA.

4,003 citations

Journal ArticleDOI

[...]

TL;DR: Bisphenol A (CAS 85-05-7) is "slightly to moderately" toxic and has low potential for bioaccumulation in aquatic organisms, with most levels nondetected.
Abstract: Bisphenol A (CAS 85-05-7) may be released into the environment through its use and handling, and permitted discharges. BPA is moderately soluble (I20 to 300 mg/L at pH 7), may adsorb to sediment (Koc 314 to 1524), has low volatility, and is not persistent based on its rapid biodegradation in acclimated wastewater treatment plants and receiving waters (half-lives 2.5 to 4 days). BPA is “slightly to moderately” toxic (algal EC 50 of 1000 μg/L) and has low potential for bioaccumulation in aquatic organisms (BCFs 5 to 68). The chronic NOEC for Daphnia magna is >3146 pg/L. Surface water concentrations are at least one to several orders of magnitude lower than chronic effects, with most levels nondetected.

1,486 citations

Journal ArticleDOI

[...]

TL;DR: Various factors governing the bioavailability, bioaccumulation and biological effects of heavy metals in sediment-dominated estuaries are reviewed.
Abstract: Using mainly United Kingdom estuaries as examples, various factors governing the bioavailability, bioaccumulation and biological effects of heavy metals in sediment-dominated estuaries are reviewed. Estuaries and metals primarily discussed include the Mersey (Hg, methylmercury; Pb, alkyllead), the Loughor (Cr, Sn), the Severn (Ag, Cd), the Fal (As, Cu, Sn, Zn), Poole Harbour (Cd, Hg, Se, tributyltin) and Southampton Water (tributyltin). Concentrations and bioavailabilities of metals in estuarine sediments depend on many different processes. Examples include (1) mobilisation of metals to the interstitial water and their chemical speciation, (2) transformation (e.g. methylation) of metals including As, Hg, Pb and Sn (3) the control exerted by major sediment components (e.g. oxides of Fe and organics) to which metals are preferentially bound, (4) competition between sediment metals (e.g. Cu and Ag; Zn and Cd) for uptake sites in organisms, and (5) the influence of bioturbation, salinity, redox or pH on these processes. Under field conditions, identification of dominant processes can be achieved by observing the goodness of fit between metal concentrations in ubiquitous deposit-feeding species and levels in various types of sediment extract over a wide spectrum of sediment types. Factors of more local importance are often indicated by the marked deviation of some points from otherwise excellent relationships. For example, points lying above the line relating tissue Sn concentrations in the clam Scrobicularia plana to those in 1 n HCl extracts of sediments were found to reflect the accumulation of tributyltin, a more readily bioavailable form of Sn. In the same species, unexpectedly high tissue-Cu concentrations were characteristic of very anoxic in sediments and tissue And As and Pb concentrations were suppressed in sediments having high concentrations of Fe oxides. Under field conditions, examples of deleterious effects on benthic organisms that can be attributed to specific metallic pollutants are comparatively rare. Effects of tributyltins from antifouling paints on oysters and neogastropods have been documented and their toxicity has undoubtedly led to environmental degradation in many UK estuaries and coastal areas. In estuaries contaminated with metal-mining wastes, the effects of Cu and Zn on species distribution can be observed, but they are generally less obvious than would be predicted from experimental data. Effects are ameliorated by the induction of metal tolerance mechanisms in some species and in others by the appearance of tolerant strains. The induction of metal detoxification systems involving the formation of granules or metal-binding proteins leads in some species to tissue concentrations that are orders of magnitude higher than normal. For example, high concentrations of Cd and Ag have been found in some species from the Severn Estuary, although there is no unequivocal evidence that either metal has caused deleterious effects on benthic populations. On the other hand, experimental studies with Ag, Cd, Cr, Cu, Hg and Zn show that they are toxic to some species at environmentally realistic levels. Since pollutants rarely occur singly, it is likely that in many moderately contaminated estuaries metals contribute to the stress to organisms caused by substances requiring detoxification. There has been much speculation over the years concerning the biomagnification of metals with increasing trophic levels along food chains. Whilst animals having higher metal concentrations than their prey are sometimes found, the only consistent evidence of biomagnification concerns methylmercury. When estuarine birds are considered, there are relatively few instances in which deleterious effects can unequivocally be attributed to metals or their compounds. However, the Mersey bird kill was attributable to alkyllead pollution from industry. Among other organometals, methylmercury has proved toxic to birds but, so far, no evidence for the toxicity of tributyltin has been reported. However, the compound may have affected bird populations through its effects on the abundance of prey organisms, particularly estuarine molluscs. Of the inorganic forms of metals, Pb in the form of shot has caused problems in many areas and Cd, Hg and Se are suspected of causing toxic effects. There is little field evidence that birds have been affected by Ag, As, Cr, Cu or Zn individually. On the other hand, it is difficult to exclude the possibility that, additively, these metals may produce a significant effect. In part, the lack of evidence reflects the fact that relatively little research has been done. There is scope for more work on metals and organometals in estuarine birds, particularly with regard to their metabolism and their effects on juveniles and individuals subjected to stresses such as starvation.

1,444 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the methylmercury concentration in water is determined by the relative efficiency of the methylation and demethylation processes, and it is shown that anoxic waters and sediments are an important source of methylcury, apparently due to the methylating activity of sulfatereducing bacteria.
Abstract: Because it is very toxic and accumulates in organisms, particularly in fish, mercury is an important pollutant and one of the most studied. Nonetheless we still have an incomplete understanding of the factors that control the bioconcentration of mercury. Elemental mercury is efficiently transported as a gas around the globe, and even remote areas show evidence of mercury pollution originating from industrial sources such as power plants. Besides elemental mercury, the major forms of mercury in water are ionic mercury (which is bound to chloride, sulfide, or organic acids) and organic mercury, particularly methylmercury. Methylmercury rather than inorganic mercury is bioconcentrated because it is better retained by organisms at various levels in the food chain. The key factor determining the concentration of mercury in the biota is the methylmercury concentration in water, which is controlled by the relative efficiency of the methylation and demethylation processes. Anoxic waters and sediments are an important source of methylmercury, apparently as the result of the methylating activity of sulfatereducing bacteria. In surface waters, methylmercury may originate from anoxic

1,432 citations

Journal ArticleDOI

[...]

TL;DR: A comprehensive and critical review of the environmental fate of eighteen commercial phthalate esters with alkyl chains ranging from 1 to 13 carbons was performed by as discussed by the authors, which revealed that most published values exceed true water solubilities due to experimental difficulties associated with solubility determinations for these hydrophobic organic liquids.
Abstract: A comprehensive and critical review was performed on the environmental fate of eighteen commercial phthalate esters with alkyl chains ranging from 1 to 13 carbons. A synthesis of the extensive literature data on physicochemical properties, partitioning behavior, abiotic and biotic transformations and bioaccumulation processes of these chemicals is presented. This chemical class exhibits an eight order of magnitude increase in octanol-water partition coefficients (Kow) and a four order of magnitude decrease in vapor pressure (VP) as alkyl chain length increases from 1 to 13 carbons. A critical review of water solubility measurements for higher molecular weight phthalate esters (i.e. alkyl chains ≥ 6 carbons) reveals that most published values exceed true water solubilities due to experimental difficulties associated with solubility determinations for these hydrophobic organic liquids. Laboratory and field studies show that partitioning to suspended solids, soils, sediments and aerosols increase as Kow increases and VP decreases. Photodegradation via free radical attack is expected to be the dominant degradation pathway in the atmosphere with predicted half-lives of ca. 1 day for most of the phthalate esters investigated. Numerous studies indicate that phthalate esters are degraded by a wide range of bacteria and actinomycetes under both aerobic and anaerobic conditions. Standardized aerobic biodegradation tests with sewage sludge inocula show that phthalate esters undergo ≥ 50% ultimate degradation within 28 days. Biodegradation is expected to be the dominant loss mechanism in surface waters, soils and sediments. Primary degradation half-lives in surface and marine waters range from <1 day to 2 weeks and in soils from <1 week to several months. Longer half-lives may occur in anaerobic, oligotrophic, or cold environments. Numerous experiments have shown that the bioaccumulation of phthalate esters in the aquatic and terrestrial foodchein is limited by biotransformation, which increases with increasing trophic level. Consequently, models that ignore biotransformation grossly exaggerate bioaccumulation potential of higher molecular weight phthalate esters. This review provides the logical first step in elucidating multimedia exposure to phthalate esters.

1,304 citations


Network Information
Related Topics (5)
Organic matter
45.5K papers, 1.6M citations
85% related
Water quality
67.1K papers, 945.1K citations
85% related
Wastewater
92.5K papers, 1.2M citations
84% related
Freundlich equation
27.6K papers, 941.4K citations
82% related
Sediment
48.7K papers, 1.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202226
2021434
2020445
2019416
2018415
2017393