scispace - formally typeset
Search or ask a question
Topic

Bioaccumulation

About: Bioaccumulation is a research topic. Over the lifetime, 7112 publications have been published within this topic receiving 208953 citations. The topic is also known as: bioakumulace.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the bioaccumulation of chromium(VI), nickel(II), copper(II) and reactive dye by the yeast Rhodotorula mucilaginosa in media containing molasses as a carbon and energy source.

86 citations

Journal ArticleDOI
TL;DR: In this paper, the levels of heavy metals in the gills, liver, stomach, kidney, bones and flesh of four fish species (Tilapia zilli, Clarias anguillaris, Synodentis budgetti and Oreochronmis niloticus) collected at River Benue in Vinikilang, Adamawa State, Nigeria for analysis of Cu, Zn, Co, Mn, Fe, Cr, Cd, Ni and Pb.
Abstract: This study was aim to determined the levels of some heavy metals in the gills, liver, stomach, kidney, bones and flesh of four fish species (Tilapia zilli, Clarias anguillaris, Synodentis budgetti and Oreochronmis niloticus) collected at River Benue in Vinikilang, Adamawa State, Nigeria for analysis of Cu, Zn, Co, Mn, Fe, Cr, Cd, Ni and Pb. These metals were chosen because at higher concentrations there might be toxic to the fish and by extension humans that depends on such fish as food. The concentrations of the metals were carried out using Flame Atomic Absorption Spectrophotometer (AAS, Unicam 969). Large differences in trace metal concentrations were observed between different tissues within each fish. The highest concentration of Fe (12.65 μg/g) was recorded in gill of Synodentis budgetti, while the lowest value of 0.68 μg/g was recorded in the flesh of Oreochronmis niloticus. The liver of Synodentis budgetti accumulates significant higher levels of Mn and Cd than other species; Fe and Zn was highest in the stomach of Tilapia zilli, while Clarias angullaris shows more of Cr, Pb, Cd and Co. The stomach of Synodentis budgetti accumulate significant higher levels of Fe than other species; Zn was highest in the stomach of Tilapia zilli, while Clarias angullaris shows more of Mn, Cr, Cu, Cd and Pb. Similarly, the bone of Synodentis budgettiaccumulates significant higher levels of Mn and Cd than other species; Zn and Fe were highest in the bone of Tilapia zilli, while Clarias angullaris shows more of Cr, Pb, Ni, and Co. The highest levels of Fe (12.65 μg/g) observed in this study was recorded in the gill of Synodentis budgetti and it was below the high residue concentrations of Fe (34 - 107 ppm) in fish samples. Based on the above results, it can therefore be concluded that metals bioaccumulation in the entire fish species study did not exceeds the permissible limits set for heavy metals by FAO, FEPA and WHO.

86 citations

01 Jan 2001
TL;DR: A national scale pilot study to examine relations of total Hg (HgT) and methylmercury (MeHg) in water, sediment and fish was conducted in the summer and fall of 1998.
Abstract: Mercury (Hg) contamination of aquatic ecosystems is a global problem. However, databases for Hg in environmental samples at regional-to-national scales are few, especially for multi-media sampling that include determination of methylmercury (MeHg). A national scale pilot study to examine relations of total Hg (HgT) and MeHg in water, sediment and fish was conducted in the summer and fall of 1998. Samples were collected at 106 sites from 21 basins across the United States, including Alaska and Hawaii. The data showed wide ranges in concentrations, which were expected given the diverse array of environmental settings, water chemistry, and Hg loading represented by these sites. Wetland density was the single most important basin-scale factor controlling MeHg production. At low concentrations, total Hg in sediment may also influence MeHg production, but at high total Hg concentrations (>1,000 nanograms per gram; ng/g) in sediment there was little evidence of increasing MeHg production with increasing total Hg. An atmospheric Hg accumulation index was developed for differentiating areas where atmospheric Hg deposition was the dominant Hg source from areas with significant on-site sources. Four study basins along the east coast of the United States had the greatest methylation efficiency, as reflected by the MeHg/HgT ratio in sediments. Nationwide, sub-basins characterized as mixed agriculture and forest cover types had the highest methylation efficiency, whereas areas affected by mining had the lowest efficiency. This study represents a first step toward a national assessment of Hg contamination of aquatic ecosystems in the United States, however, additional data are needed to improve our resolution of the factors controlling MeHg production and bioaccumulation.

86 citations

Journal ArticleDOI
TL;DR: The interference relationship between Ni and Co uptake demonstrated by B. coddii suggests a significant limitation to phytoextraction where both metals are present, and may indicate competition for binding sites in the root zone.
Abstract: We investigated the potential of the South African high-biomass Ni hyperaccumulator Berkheya coddii to phytoextract Co and/or Ni from artificial metalliferous media. Plant accumulation of both metals from single-element substrates indicate that the plant/media metal concentration quotient (bioaccumulation coefficient) increases as total metal concentrations increase. Cobalt was readily taken up by B. coddii with and without the presence of Ni. Nickel uptake was, however, inhibited by the presence of an equal concentration of Co. Bioaccumulation coefficients of Ni and Co for the single element substrates (total metal concentration of 1000 micrograms g-1) were 100 and 50, respectively. Cobalt phytotoxicity was observed above a total Co concentration in plant growth media of 20 micrograms g-1. Elevated Co concentrations significantly decreased the biomass production of B. coddii without affecting the bioaccumulation coefficients. The mixed Ni-Co substrate produced bioaccumulation coefficients of 22 for both Ni and Co. Cobalt phytotoxicity in mixed Ni-Co substrate occurred above a total Co concentration of 15 micrograms g-1. When grown in the presence of both Ni and Co, the bioaccumulation coefficients of each metal were reduced, as compared to single-element substrate. This may indicate competition for binding sites in the root zone. The interference relationship between Ni and Co uptake demonstrated by B. coddii suggests a significant limitation to phytoextraction where both metals are present.

86 citations

Journal ArticleDOI
TL;DR: The results show that the total potential ecological risk in the area can be considered as "moderate" and heavy metal values were similar or surpassed the values from other highly industrialized tropical coastal regions.

86 citations


Network Information
Related Topics (5)
Organic matter
45.5K papers, 1.6M citations
85% related
Water quality
67.1K papers, 945.1K citations
85% related
Wastewater
92.5K papers, 1.2M citations
84% related
Freundlich equation
27.6K papers, 941.4K citations
82% related
Sediment
48.7K papers, 1.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023949
20222,090
2021463
2020445
2019416
2018415