scispace - formally typeset
Search or ask a question
Topic

Bioaccumulation

About: Bioaccumulation is a research topic. Over the lifetime, 7112 publications have been published within this topic receiving 208953 citations. The topic is also known as: bioakumulace.


Papers
More filters
Journal ArticleDOI
TL;DR: This work characterized the heavy metal bioaccumulation in honey bees, Apis mellifera ligustica, collected at 35 sites from Umbria (Central Italy), and developed a Honeybee Contamination Index (HCI), a reliable tool that provided a piece of concise information on metal contamination in terrestrial environments.

73 citations

Journal ArticleDOI
TL;DR: The findings suggest that the species may be classified as efficient metal trap for Cd in aerial parts, as indicated by higher metal accumulation in the leaves combined with BCF and translocation factor (TF) values.
Abstract: The work investigates on the potential of ten mangrove species for absorption, accumulation and partitioning of trace metal(loid)s in individual plant tissues (leaves, bark and root/pneumatophore) at two study sites of Indian Sundarban Wetland. The metal(loid) concentration in host sediments and their geochemical characteristics were also considered. Mangrove sediments showed unique potential in many- fold increase for most metal(loid)s than plant tissues due to their inherent physicochemical properties. The ranges of concentration of trace metal(loid)s for As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in plant tissue were 0.006-0.31, 0.02-2.97, 0.10-4.80, 0.13-6.49, 4.46-48.30, 9.2-938.1, 0.02-0.13, 9.8-1726, 11-5.41, 0.04-7.64, 3.81-52.20 μg g (-1)respectively. The bio- concentration factor (BCF) showed its maximum value (15.5) in Excoecaria agallocha for Cd, suggesting that it can be considered as a high-efficient plant for heavy metal bioaccumulation. Among all metals, Cd and Zn were highly bioaccumulated in E. agallocha (2.97 and 52.2 μg g (-1) respectively. Our findings suggest that the species may be classified as efficient metal trap for Cd in aerial parts, as indicated by higher metal accumulation in the leaves combined with BCF and translocation factor (TF) values.

73 citations

Journal ArticleDOI
TL;DR: Mesocosm results nevertheless complement earlier field reports of unexpectedly enriched levels of certain metals (notably Cd) in biota from this part of the central North Sea, and may be useful for screening the biological impact of sediments and wastes destined for disposal in the marine environment.
Abstract: There are conflicting arguments surrounding the nature and origins of metal enrichment in sediments from the Dogger Bank (central North Sea) and much speculation as to its biological significance. To help resolve this controversy, a mesocosm approach was evaluated to test whether metal loadings in sediments from the Dogger Bank region display enhanced bioavailability, relative to reference sites off south-west England. This involved the combination of physicochemical characterization of sediments (including porewaters) with bioaccumulation studies, using sediment cores seeded with benthic organisms (bivalves Spisula solida and Venus striatula, the gastropod Turritella communis and the polychaete Melinna palmata). There was little evidence of As, Cu, Hg or Pb bioaccumulation from Dogger cores. In contrast, all species accumulated Cd; Ag concentrations rose by up to fourfold in most bioindicators; and Ni, Cr and Mn burdens also increased, occasionally by as much as 10-fold. Variable, but generally smaller increases in Fe and Zn were observed. Physiological variations in metal bioaccumulation processes, including the ability to regulate essential elements, were responsible for species differences in response—a feature which may contribute to uncertainty in the interpretation and comparison of biomonitoring data. Mesocosm results nevertheless complement earlier field reports of unexpectedly enriched levels of certain metals (notably Cd) in biota from this part of the central North Sea. Characterization of sediments provided some physicochemical explanations for enhanced metal uptake in biota and helped, partly, to define bioavailable and anthropogenic fractions. Thus, whilst total sediment-metal concentrations were not exceptional in Dogger samples, for some metals there was a significant proportion in non-refractory (readily extractable) form, together with relatively high concentrations in interstitial waters—both presumably available for assimilation. Normalization of sediment metals, with respect to grain size and Fe, indicated a homogeneous population of fines (

73 citations

Journal ArticleDOI
TL;DR: Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification, and will be useful for environmental impact assessment of REE enrichment in northern regions.
Abstract: Few ecotoxicological studies exist for rare earth elements (REEs), particularly field-based studies on their bioaccumulation and food web dynamics. REE mining has led to significant environmental impacts in several countries (China, Brazil, U.S.), yet little is known about the fate and transport of these contaminants of emerging concern. Northern ecosystems are potentially vulnerable to REE enrichment from prospective mining projects at high latitudes. To understand how REEs behave in remote northern food webs, we measured REE concentrations and carbon and nitrogen stable isotope ratios (∂15N, ∂13C) in biota from marine, freshwater, and terrestrial ecosystems of the eastern Canadian Arctic (N = 339). Wildlife harvesting and tissue sampling was partly conducted by local hunters through a community-based monitoring project. Results show that REEs generally follow a coherent bioaccumulation pattern for sample tissues, with some anomalies for redox-sensitive elements (Ce, Eu). Highest REE concentrations were found at low trophic levels, especially in vegetation and aquatic invertebrates. Terrestrial herbivores, ringed seal, and fish had low total REE levels in muscle tissue (∑REE for 15 elements <0.1 nmol g-1), yet accumulation was an order of magnitude higher in liver tissues. Age- and length-dependent REE accumulation also suggest that REE uptake is faster than elimination for some species. Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification. This study provides novel data on the behaviour of REEs in ecosystems and will be useful for environmental impact assessment of REE enrichment in northern regions.

73 citations

Journal ArticleDOI
TL;DR: It is shown that trophic elevation on a fine scale (within the forage fish community) may not result in increased contaminant bioaccumulation, which further challenges the general assumptions of food web theory and contaminantBioaccumulations.
Abstract: Rainbow smelt (Osmerus mordax) is a recent invader to the lakes of the Hudson Bay drainage in northwestern Ontario, Canada. In some systems, the invasion has been linked to an increase in mercury (Hg) concentration in native predatory fish. This increase may be due to the fact that rainbow smelt are trophically elevated and thus accumulate more Hg than native forage fish species. To test this hypothesis, we compared the trophic positions and Hg concentrations of rainbow smelt and native forage fish in a series of smelt-invaded and reference lakes in northwestern Ontario. A comparison of forage fish 15 N (an index of trophic position) between the smelt-invaded and reference lakes indicated that rainbow smelt moved into a trophic niche that was unoccupied prior to their arrival. Relationships between 15 N and body size and between Hg concentration and body size differed among the forage species. This indicates that the response of predator Hg concentrations to smelt invasion depends on both the species and size composition of their preversus post-invasion diet. At a standardized body mass of 10 g, rainbow smelt were significantly trophically elevated relative to most native forage species, but they did not have significantly higher muscle Hg concentrations. Relationships between Hg concentration and 15 N were weak, both within and among forage fish species. This study shows that trophic elevation on a fine scale (within the forage fish community) may not result in increased contaminant bioaccumulation. It further challenges the general assumptions of food web theory and contaminant bioaccumulation.

73 citations


Network Information
Related Topics (5)
Organic matter
45.5K papers, 1.6M citations
85% related
Water quality
67.1K papers, 945.1K citations
85% related
Wastewater
92.5K papers, 1.2M citations
84% related
Freundlich equation
27.6K papers, 941.4K citations
82% related
Sediment
48.7K papers, 1.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023949
20222,090
2021463
2020445
2019416
2018415