scispace - formally typeset
Search or ask a question
Topic

Bioaccumulation

About: Bioaccumulation is a research topic. Over the lifetime, 7112 publications have been published within this topic receiving 208953 citations. The topic is also known as: bioakumulace.


Papers
More filters
Journal ArticleDOI
TL;DR: This work has shown that the use of delta 15N analysis to characterize trophic relationships can be useful for tracing biocontaminants in food webs and will help clarify the role of phytochemical barriers to food webs.
Abstract: Several recent studies have shown that the use of delta 15N analysis to characterize trophic relationships can be useful for tracing biocontaminants in food webs. In this study, concentration of to...

438 citations

Journal ArticleDOI
Yini Ma1, Anna Huang1, Siqi Cao1, Feifei Sun1, Lianhong Wang1, Hongyan Guo1, Rong Ji1 
TL;DR: The findings underlined the high potential ecological risks of FPs, and suggested that NPs should be given more concerns, in terms of their interaction with hydrophobic pollutants in the environment.

432 citations

Journal ArticleDOI
TL;DR: Sulfonates bioaccumulated to a greater extent than carboxylates of equivalent perfluoroalkyl chain length, indicating that hydrophobicity is not the sole determinant of PFA accumulation potential and that the acid function must be considered.
Abstract: Perfluorinated acids (PFAs) recently have emerged as persistent global contaminants after their detection in wildlife and humans from various geographic locations. The highest concentrations of perfluorooctane sulfonate are characteristically observed in high trophic level organisms, indicating that PFAs may have a significant bioaccumulation potential. To examine this phenomenon quantitatively, we exposed juvenile rainbow trout (Oncorhynchus mykiss) simultaneously to a homologous series of perfluoroalkyl carboxylates and sulfonates for 34 d in the diet, followed by a 41-d depuration period. Carcass and liver concentrations were determined by using liquid chromatography-tandem mass spectrometry, and kinetic rates were calculated to determine compound-specific bioaccumulation parameters. Depuration rate constants ranged from 0.02 to 0.23/d, and decreased as the length of the fluorinated chain increased. Assimilation efficiency was greater than 50% for all test compounds, indicating efficient absorption from food. Bioaccumulation factors (BAFs) ranged from 0.038 to 1.0 and increased with length of the perfluorinated chain; however, BAFs were not statistically greater than 1 for any PFA. Sulfonates bioaccumulated to a greater extent than carboxylates of equivalent perfluoroalkyl chain length, indicating that hydrophobicity is not the sole determinant of PFA accumulation potential and that the acid function must be considered. Dietary exposure will not result in biomagnification of PFAs in juvenile trout, but extrapolation of these bioaccumulation parameters to larger fish and homeothermic organisms should not be performed.

428 citations

Journal ArticleDOI
TL;DR: The present paper summarizes the recent literature with an emphasis on identifying important ecological factors for explaining variability of OC concentrations among organisms and introduces simplification into models developed to assess OC dynamics in aquatic food webs.
Abstract: Recent studies of arctic marine food webs have provided detailed insights regarding the biological and chemical factors that influence the bioaccumulation and trophic transfer of persistent organochlorine (OC) contaminants in aquatic systems. The present paper summarizes the recent literature with an emphasis on identifying important ecological factors for explaining variability of OC concentrations among organisms. The Arctic ecosystem has a number of unique attributes, including long food chains, reduced diversity of species, similar food webs across the entire region, and limited influence from pollution point sources. Lipid content, body size, age, gender, reproduction, habitat use, migration, biotransformation, seasonal changes in habitat conditions, feeding ecology, and trophic position have all been demonstrated to influence OC concentrations and bioaccumulation in arctic marine biota. The relative importance of each factor varies among OCs and organisms. Diet or trophic level is the dominant factor influencing OC concentrations and dynamics in seabirds and marine mammals, although biotransformation can significantly influence nonrecalcitrant OCs, such as hexachlorocyclohexane isomers. Dietary accumulation of OCs is also an important route of exposure for arctic fish and zooplankton, and biomagnification of OCs may also occur among these organisms. To date, only limited attempts have been made to model trophic transfer of OCs in the arctic marine food web. Although models developed to assess OC dynamics in aquatic food webs have included some biological variables (e.g., lipid content, feeding rate, diet composition, and growth rate), selection of processes included in these models as well as their mathematical solutions and parameterization all introduce simplification. This reduces biological validity of the models and may be particularly problematic in a highly seasonal environment, such as the Arctic Ocean.

424 citations

Journal ArticleDOI
TL;DR: Concentrations of most PCBs and OC pesticides in ringed seal and polar bear populations in the Canadian Arctic are quite similar indicating a uniform geographic distribution of contamination, although alpha-HCH showed a distinct latitudinal gradient in bears due to higher levels in zones influenced by continental runoff.

416 citations


Network Information
Related Topics (5)
Organic matter
45.5K papers, 1.6M citations
85% related
Water quality
67.1K papers, 945.1K citations
85% related
Wastewater
92.5K papers, 1.2M citations
84% related
Freundlich equation
27.6K papers, 941.4K citations
82% related
Sediment
48.7K papers, 1.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023949
20222,090
2021463
2020445
2019416
2018415