scispace - formally typeset
Search or ask a question
Topic

Bioaerosol

About: Bioaerosol is a research topic. Over the lifetime, 1347 publications have been published within this topic receiving 34791 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a commercially available, intrinsic fluorescence-based bio-aerosol detection RMM was utilized to determine the ability of such systems in the detection of heat-stressed microorganisms.
Abstract: A number of rapid microbiological methods capable of aerosol-based microbial detection are quickly emerging for use in the pharmaceutical and food markets. A subset of these technologies utilizes intrinsic microbial fluorescence as the basis for bioaerosol detection. This fundamental method of detection is relatively new to the pharmaceutical and food industries, which rely on traditional culture-based methods implemented decades ago to gain an understanding of their manufacturing environments. When combined with real time and continuous assessment, intrinsic fluorescence-based detection provides a new level of information and monitoring in these environments. One aspect of this monitoring relates to the detection of stressed micro-organisms. Bacteria found in pharmaceutical and food manufacturing environments can be in a stressed state due to heat, UV, or chemical exposure, desiccation, and so forth. As a result, the ability of an environmental monitoring system to detect stressed microbes is of particular interest. A commercially available, intrinsic fluorescence-based bioaerosol detection RMM was utilized in this study to determine the ability of such systems in the detection of heat-stressed microorganisms. An assessment of culturability and growth delay in control and heat-stressed samples was performed to confirm stress. Furthermore, the performance of the intrinsic fluorescence-based bioaerosol detection systems were compared to the SAS Super 100, MAS-100 NT, and SMA air samplers in the detection of heat-stressed Escherichia coli, Staphylococcus epidermidis, and Bacillus atrophaeus spores. These bacteria were selected because they are industry-relevant organisms, commonly found in various manufacturing environments, that represent a Gram-positive, Gram-negative, and spore-forming bacteria, respectively. It was found that the intrinsic fluorescence-based bioaerosol detection systems can detect heat-stressed microorganisms, including those that are not detected by the traditional culture-based method due to the inability of the stressed microbes to form colony-forming units. LAY ABSTRACT: Rapid microbiological methods capable of aerosol-based microbial detection are emerging for use in pharmaceutical and food markets. A subset of these technologies utilizes intrinsic microbial fluorescence as the basis for bioaerosol detection, a method relative new to the pharmaceutical and food industries, which rely on traditional culture-based methods. Bacteria found in such environments can be in a stressed state due to heat, UV, or chemical exposure, desiccation, and so forth. As a result, the ability of an environmental monitoring system to detect stressed microbes is of particular interest. A commercially available, intrinsic fluorescence-based bioaerosol detection RMM was utilized in this study to determine the ability of such systems in the detection of heat-stressed microorganisms. An assessment of culturability and growth delay in control and heat-stressed samples was performed to confirm stress. Furthermore, the performance of the intrinsic fluorescence-based bioaerosol detection systems were compared to the SAS Super 100, MAS-100 NT and SMA air samplers in the detection of heat-stressed Escherichia coli, Staphylococcus epidermidis, and Bacillus atrophaeus spores. These bacteria were selected because they are industry-relevant organisms, commonly found in various manufacturing environments, that represent a Gram-positive, Gram-negative, and spore forming bacteria, respectively. It was found that the intrinsic fluorescence-based bioaerosol detection systems can detect heat-stressed microorganisms, including those that are not detected by the traditional culture-based method due to the inability of the stressed microbes to form colony-forming units.

6 citations

Journal ArticleDOI
TL;DR: In this article, the authors used Muramic and dipicolinic acids, and ergosterol as tracers for bacteria cells, bacterial spores, and fungal spores, respectively.
Abstract: The lack of information on biological risks in workplaces arises from the difficulty to measure bioaerosol. This study aimed to develop and improve the bioaerosol monitoring technique that uses proper biomarkers as a tool. Muramic and dipicolinic acids, and ergosterol were used as tracers for bacteria cells, bacterial spores, and fungal spores, respectively. Furthermore, 12- and 13-methyltetradecanoic acids (iso- and anteiso- C15:0) were used to study the presence of airborne bacteria and 3-hydroxy fatty acids were used to determine the concentration of peptidoglycan. Airborne particulate matter was sampled in a municipal indoor waste composting facility by multistage impactor samplers, during three main stages of composting process. The microorganism content, in airborne particles with aerodynamic diameter minor then 1 μm and between 1 and 10 μm, was determined starting from the aforementioned biomarker concentrations. For iso- and anteiso- C15:0, a conversion factor to transform its concentration into bacterial content was tentatively proposed. The results show that the chemical method covers some gaps in the information about bioaerosol presence in polluted atmospheres. Differences up to two orders of magnitude are observed, by comparing the results obtained by biomarkers and by cultivation-dependent methods. The microbial content, expressed as a percentage by mass on respect the PM, ranged from 4 to 28% with higher percentages during shredding and mixing stages and lower values during biocell opening operations. Bacterial spores, bacterial cells, and fungal spores detected were high in number, compared with the findings in similar studies elsewhere.

6 citations

Journal ArticleDOI
TL;DR: A sampling of airborne bacteria and fungi was performed using the gravitational method in 9 sites including an upwind site, intra-plant and outside a hospital wastewater treatment plants with activated sludge technology in Tehran from March to June to help manage bioaerosols exposure risk such as WWTP.

6 citations

Journal ArticleDOI
TL;DR: It is suggested that bioaerosol “fingerprinting” is possible with the two test environments being distinguishable at a 97 % confidence interval and information-rich enough to identify human occupation in an indoor space.
Abstract: A substantial portion of the atmospheric particle budget is of biological origin (human and animal dander, plant and insect debris, etc.). These bioaerosols can be considered information-rich packets of biochemical data specific to the organism of origin. In this study, bioaerosol samples from various indoor environments were analyzed to create identifiable patterns attributable to a source level of occupation. Air samples were collected from environments representative of human high-traffic- and low-traffic indoor spaces along with direct human skin sampling. In all settings, total suspended particulate matter was collected and the total aerosol protein concentration ranged from 0.03 to 1.2 μg/m3. High performance liquid chromatography was chosen as a standard analysis technique for the examination of aqueous aerosol extracts to distinguish signatures of occupation compared to environmental background. The results of this study suggest that bioaerosol “fingerprinting” is possible with the two test environments being distinguishable at a 97 % confidence interval.

6 citations

Journal ArticleDOI
TL;DR: In this article, the authors used fluorescence in situ hybridization (FISH) to investigate the sources and spatiotemporal distribution of Amazonian bioaerosols on the domain level.
Abstract: . The Amazon rain forest plays a major role in global hydrological cycling, and biogenic aerosols are likely to influence the formation of clouds and precipitation. Information about the sources and altitude profiles of primary biological aerosol particles, however, is sparse. We used fluorescence in situ hybridization (FISH), a molecular biological staining technique largely unexplored in aerosol research, to investigate the sources and spatiotemporal distribution of Amazonian bioaerosols on the domain level. We found wet season bioaerosol number concentrations in the range of 1–5 × 10 5 m −3 accounting for > 70 % of the coarse mode aerosol. Eukaryotic and bacterial particles predominated, with fractions of ∼ 56 % and ∼ 26 % of the intact airborne cells. Archaea occurred at very low concentrations. Vertical profiles exhibit a steep decrease in bioaerosol numbers from the understory to 325 m height on the Amazon Tall Tower Observatory (ATTO), with a stronger decrease in Eukarya compared to Bacteria. Considering earlier investigations, our results can be regarded as representative for near-pristine Amazonian wet season conditions. The observed concentrations and profiles provide new insights into the sources and dispersion of different types of Amazonian bioaerosols as a solid basis for model studies on biosphere–atmosphere interactions such as bioprecipitation cycling.

6 citations


Network Information
Related Topics (5)
Aerosol
33.8K papers, 1.1M citations
83% related
Environmental exposure
37.4K papers, 1.8M citations
77% related
Denitrification
23.7K papers, 663.3K citations
69% related
Nitrate
28.2K papers, 840.7K citations
69% related
Particle size
69.8K papers, 1.7M citations
68% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023133
2022235
202195
202094
201989
201871