scispace - formally typeset
Search or ask a question
Topic

Bioaerosol

About: Bioaerosol is a research topic. Over the lifetime, 1347 publications have been published within this topic receiving 34791 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Various literatures revealing the concentration levels of bioaerosol have been mentioned in this review thereby contributing to the knowledge of identification and quantification ofBioaerosols and their different constituents in various indoor environments (both occupational and non-occupational sections).

231 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a real-time system for measuring the laser-induced fluorescence (total and spectrally dispersed) of individual airborne particles, which can distinguish between some biological and nonbiological aerosols, and among several types of laboratory-generated biological aerosols.
Abstract: Improved real-time methods for characterizing airborne biological particles are needed. Here we review our efforts in developing techniques for measuring the laser-induced fluorescence (total and spectrally dispersed) of individual airborne particles, and describe our present system, which can measure fluorescence spectra of single micrometer-sized bioaerosol particles with good signal-to-noise ratios. We demonstrate the capability of this system by showing measured spectra of a variety of airborne particles generated in the laboratory from road dust, ammonium sulfate, Bacillus subtilis and other bacteria prepared under various conditions, allergens, cigarette smoke, and chicken-house dust. These spectra illustrate the capability of the system to distinguish between some biological and nonbiological aerosols, and among several types of laboratory-generated biological aerosols. We suggest improvements needed to make our system field portable. © 1999 John Wiley & Sons, Inc.* Field Analyt Chem Technol 3: 221–239, 1999

229 citations

Journal ArticleDOI
TL;DR: Bacterial concentrations at the human activity-enriched site (RCEES) and the highly trafficked site (XZM) were virtually the same point, and significant variation in bacterial concentrations in different seasons was observed at RCEES and XZM with higher concentrations in summer and autumn.
Abstract: Airborne bacteria are important biological components of bioaerosol and play an important role in ecosystem. Bacteria at a high concentration in the atmosphere can result in biological air pollution and all kinds of diseases. In this study, a systematical survey on the culturable airborne bacteria was carried out for 1 year at three sites in Beijing urban area. Results showed that concentrations of culturable bacteria ranged from 71 colony forming units (CFU)/m3 to 22,100 CFU/m3, and the mean was 2,217 CFU/m3. Bacterial concentrations at the human activity-enriched site (RCEES) and the highly trafficked site (XZM) were virtually the same point. They were significantly higher than those at the greener site (BBG). Significant variation in bacterial concentrations in different seasons was observed at RCEES and XZM with higher concentrations in summer and autumn. In a single day, significantly lower concentrations were detected at 13:00 hours through all sampling sites. In this study, 165 species in 47 genera of culturable bacteria were identified. Micrococcus was one of the most dominant bacterial groups and contributed to approximately 20∼30% of the total bacterial concentration, followed by Staphylococcus, Bacillus, Corynebacterium, and Pseudomonas. The bacterial species with a high concentration percentage included Micrococcus luteus and Micrococcus roseus.

223 citations

Journal ArticleDOI
TL;DR: In this paper, the main techniques currently available for sampling and detecting airborne microorganisms, examines a number of factors which can affect their survival, and discusses problems associated with the production of test bioaerosols.

217 citations

Journal ArticleDOI
TL;DR: These analyses revealed strong relationships between fungal aerodynamic diameters and features of taxonomic compositions, including allergens and infectious pathogens in seasonal, size-resolved fungal communities in outdoor air in an urban setting in the northeastern United States.
Abstract: Fungi are ubiquitous in outdoor air, and their concentration, aerodynamic diameters and taxonomic composition have potentially important implications for human health. Although exposure to fungal allergens is considered a strong risk factor for asthma prevalence and severity, limitations in tracking fungal diversity in air have thus far prevented a clear understanding of their human pathogenic properties. This study used a cascade impactor for sampling, and quantitative real-time PCR plus 454 pyrosequencing for analysis to investigate seasonal, size-resolved fungal communities in outdoor air in an urban setting in the northeastern United States. From the 20 libraries produced with an average of ∼800 internal transcribed spacer (ITS) sequences (total 15 326 reads), 12 864 and 11 280 sequences were determined to the genus and species levels, respectively, and 558 different genera and 1172 different species were identified, including allergens and infectious pathogens. These analyses revealed strong relationships between fungal aerodynamic diameters and features of taxonomic compositions. The relative abundance of airborne allergenic fungi ranged from 2.8% to 10.7% of total airborne fungal taxa, peaked in the fall, and increased with increasing aerodynamic diameter. Fungi that can cause invasive fungal infections peaked in the spring, comprised 0.1–1.6% of fungal taxa and typically increased in relative abundance with decreasing aerodynamic diameter. Atmospheric fungal ecology is a strong function of aerodynamic diameter, whereby through physical processes, the size influences the diversity of airborne fungi that deposit in human airways and the efficiencies with which specific groups of fungi partition from outdoor air to indoor environments.

217 citations


Network Information
Related Topics (5)
Aerosol
33.8K papers, 1.1M citations
83% related
Environmental exposure
37.4K papers, 1.8M citations
77% related
Denitrification
23.7K papers, 663.3K citations
69% related
Nitrate
28.2K papers, 840.7K citations
69% related
Particle size
69.8K papers, 1.7M citations
68% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023133
2022235
202195
202094
201989
201871