scispace - formally typeset
Search or ask a question
Topic

Bioaerosol

About: Bioaerosol is a research topic. Over the lifetime, 1347 publications have been published within this topic receiving 34791 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new sampling method for monitoring the personal exposure to bioaerosol particles has been developed and evaluated with bacteria and fungi, which is submerged into a liquid layer.

61 citations

Journal ArticleDOI
TL;DR: In 1976, the activated sludge sewage treatment plant in Edmonton, Canada, was surveyed to determine the numbers of culturable airborne microorganisms, so in 2004 another survey was done to determine if changes had reduced the bioaerosols.

61 citations

Journal ArticleDOI
TL;DR: The data suggest that area samples are not representative of personal bacteria exposures, which may be affected by worker movement, bacteria carried on the worker and worker location.

61 citations

Journal ArticleDOI
TL;DR: The combined sampling PCR detection method was found to be fully feasible for the rapid and highly specific identification of the labile airborne virus in the air containing elevated concentrations of other microorganisms.
Abstract: We have recently developed a new personal sampler and demonstrated its feasibility for detection of viable airborne microorganisms including bacteria, fungi and viruses. To accelerate the time-consuming analytical procedure involving 2-5 days of biological testing, we employed a real-time PCR protocol in conjunction with the personal sampler for collection of airborne viruses. The advantage of this approach is that if the presence of a particular pathogen in the air is detected by the PCR, the remaining collecting liquid can be further analysed by more time-consuming biological methods to estimate the number of airborne infectious/live microorganisms. As sampling of bioaerosols in natural environments is likely to be associated with substantial contamination by a range of microorganisms commonly existing in an ambient air, an investigation of the specificity of detection by targeted PCR analysis is required. Here we present the results of the study on the detection of Influenza virus in the ambient air contaminated with high concentrations of bacteria and fungi using real-time PCR protocol. The combined sampling PCR detection method was found to be fully feasible for the rapid ( approximately 2.5 h) and highly specific (no cross-reactivity) identification of the labile airborne virus in the air containing elevated concentrations of other microorganisms.

61 citations

Journal ArticleDOI
TL;DR: The thermal heating effects on fungal bioaerosols in a continuous-flow environment and the effect of a continuous high-temperature, short-time (HTST) process on airborne microorganisms has not been quantitatively investigated in terms of various aerosol properties.
Abstract: Fungi are omnipresent in indoor and outdoor environments (2, 28, 39). Most fungi are dispersed through the release of spores into the air, a phenomenon known to be driven by two kinds of energy (17): the energy provided by the fungus itself and the energy provided by external sources, such as air currents, rain, gravity, or changes in temperature and nutritional sources. Of these various mechanisms of fungal particle release, dispersal by air currents is the most prevalent mechanism for indoor fungal particles (19, 31). These airborne fungal spores, termed fungal bioaerosols, are resistant to environmental stresses and are adapted to airborne transport. Fungal bioaerosols constitute the major component of ambient airborne microorganisms (23, 50, 51). Several studies have reported that the concentration of fungal bioaerosols is relevant to the occurrence of human diseases and public health problems associated with acute toxic effects, allergies (3, 18), and asthma (4, 5, 13, 48). Fungal bioaerosols are of particular concern in healthcare facilities, where they can cause major infectious complications as opportunistic pathogens in patients with an immunodeficiency (9). For instance, invasive mycoses can affect patients undergoing high-dose chemotherapy for hematological malignancies associated with a prolonged period of neutropenia; they can also affect solid-organ transplant recipients. Despite all diagnostic and therapeutic efforts, the outcome of an invasive fungal infection is often fatal (with a mortality rate of around 50% for aspergillosis) (37). The main fungal genera responsible for these infections are as follows: Aspergillus spp., Fusarium spp., Scedosporium spp., and Mucorales spp. (10, 12, 20). However, virtually any filamentous fungus can be a pathogen (22, 41). In the hospital environment, possible sources of airborne nosocomial infection include ventilation or air-conditioning systems, decaying organic material, dust, water, food, ornamental plants, and building materials in and around hospitals (1). One of the major bioaerosols of concern is (1→3)-β-d-glucans, which comprises up to 60% of the cell wall of most fungal organisms. The (1→3)-β-d-glucans are glucose polymers with a variable molecular weight and a degree of branching (49). The results of several studies about the exposure of subjects to airborne (1→3)-β-d-glucans suggest that these agents play a role in bioaerosol-induced inflammatory responses and resulting respiratory symptoms, such as a dry cough, phlegmy cough, hoarseness, and atopy (11, 44). In addition, given that many epidemiological studies have reported that (1→3)-β-d-glucan has strong immuno-modulating effects (42, 47), (1→3)-β-d-glucan is an important parameter for exposure assessment by itself and as a surrogate component for fungi (16). To prevent the adverse health effects of fungal bioaerosols, we must ensure that control methods for airborne fungal spores are studied and developed. However, despite the necessity of controlling fungal bioaerosols, few studies have focused on such control mechanisms. The most common control methods are UV irradiation and electric ion emission. Given that UV irradiation is known to have a germicidal effect, several studies have examined how UV irradiation affects the viability of bioaerosols (35, 42). However, although UV irradiation can be easily applied by simply installing and turning on a UV lamp, the 254-nm-wavelength UV light produces ozone and radicals, which cause harmful effects to surrounding humans. Electric ion emission has also been studied as a means of controlling bioaerosols (21, 27). When the efficiency of the filter is increased, the efficacy of respiratory protection devices against bioaerosols can be enhanced. Although electric ions decrease the viability of airborne bacteria (25), the generation of the ions produces ozone, a pollutant, and also causes electric charges to accumulate on surrounding surfaces. Recently, heat treatment of indoor air using thermal processes has been considered a safe, effective, and environment-friendly method; it does not produce ozone or use ion or filter media. A thermal heating process has long been considered a suitable and reliable method for controlling microorganisms. Two types of heat are generally used, moist heat and dry heat. Moist heat utilizes steam under pressure, whereas dry heat involves high-temperature exposure without additional moisture. Several types of heat treatment are currently used for killing microorganisms. The treatments include incineration, Tyndallization, pasteurization, and autoclaving (32). However, most of these technologies were originally limited to controlling microorganisms in liquid or on material surfaces. In addition, they may not be adequate for controlling bioaerosols because the continuous surrounding environment of bioaerosols is significantly different from the conditions in liquid and on solid surfaces. Therefore, it is necessary to find adequate and practical conditions for controlling bioaerosols. Thus far, several investigations regarding the use of thermal processes against bioaerosols have been reported. Some of these studies have targeted airborne bacteria spores widely used as surrogates for biological warfare agents (8, 34), while others have focused on environmental parameters for the culture and survival of various vegetative cells (14, 29, 46). However, in these studies novel techniques for aerosols, such as measuring and analyzing aerosol particle size, distributions, and concentrations, were not utilized. In addition, to the best of our knowledge, there has been no study on the use of a thermal process for controlling fungal bioaerosols in continuous airflow. Fungal bioaerosols were found to be very resistant to a thermal environment in previous studies. In this study, we investigated the thermal heating effects on the physical, chemical, and biological properties of fungal bioaerosols using a high-temperature, short-time (HTST) sterilization process. The HTST process, a type of thermal heating process, is based on high-temperature stresses for very short periods. Although this thermal process has been used for the microbial decontamination of seeds and dried, powdered products, such as pharmaceuticals and heat-sensitive drink and food, it can be also applied to the control of an airborne microorganism in a continuous-flow system, such as a heating, ventilation, and air-conditioning system (15, 33, 38). When the fungal bioaerosol was passed through a thermal electric heating system, the fungal spores were exposed to various temperatures for short periods. Then, we examined the bioaerosol and aerosol characteristics, including aerosol size distribution, culturability, (1→3)-β-d-glucan production, and surface morphology, using a novel technique for sampling and measuring aerosols.

61 citations


Network Information
Related Topics (5)
Aerosol
33.8K papers, 1.1M citations
83% related
Environmental exposure
37.4K papers, 1.8M citations
77% related
Denitrification
23.7K papers, 663.3K citations
69% related
Nitrate
28.2K papers, 840.7K citations
69% related
Particle size
69.8K papers, 1.7M citations
68% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023133
2022235
202195
202094
201989
201871