scispace - formally typeset
Search or ask a question
Topic

Bioaerosol

About: Bioaerosol is a research topic. Over the lifetime, 1347 publications have been published within this topic receiving 34791 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It was found that Staphylococcus xylosus had the greatest ability to form biofilms, while the strains with the highest antibiotic resistance were Micrococcus luteus D and Macrococcus equipercicus.
Abstract: The aims of this article are to characterize: the quantity of culturable bacterial aerosol (QCBA) and the quality of culturable bacterial aerosol (QlCBA) in an office building in Southern Poland during the spring. The average concentration of culturable bacterial aerosol (CCBA) in this building ranged from 424 CFU m−3 to 821 CFU m−3, below Polish proposals for threshold limit values. Size distributions were unimodal, with a peak of particle bacterial aerodynamic diameters less than 3.3 μm, increasing potentially adverse health effects due to their inhalation. The spring office exposure dose (SPED) of bacterial aerosol was estimated. The highest value of SPED was in April (218 CFU kg−1), whereas the lowest was in June (113 CFU kg−1). Analysis was undertaken to determine the antibiotic resistance of isolated strains and their ability to form biofilms, which may facilitate the spread of antibiotic resistance genes. In the course of the study, it was found that Staphylococcus xylosus had the greatest ability to form biofilms, while the strains with the highest antibiotic resistance were Micrococcus luteus D and Macrococcus equipercicus. Given that mainly antibiotic-sensitive bacteria from bioaerosol were isolated, which transfers resistance genes to their plasmids, this shows the need for increased monitoring of indoor air quality in workplaces.

54 citations

Journal ArticleDOI
TL;DR: Investigation of aerosols generated during dental treatment showed that during treatment, there is a significant increase in airborne concentration of bacteria and fungi, and evidence-based prevention measures are recommended.
Abstract: Background Dental care professionals are exposed to aerosols from the oral cavity of patients containing several pathogenic microorganisms. Bioaerosols generated during dental treatment are a potential hazard to dental staff, and there have been growing concerns about their role in transmission of various airborne infections and about reducing the risk of contamination. Aims To investigate qualitatively and quantitatively the bacterial and fungal aerosols before and during clinical sessions in two dental offices compared with controls. Methods An extra-oral evacuator system was used to measure bacterial and fungal aerosols. Macroscopic and microscopic analysis of bacterial species and fungal strains was performed and strains of bacteria and fungi were identified based on their metabolic properties using biochemical tests. Results Thirty-three bioaerosol samples were obtained. Quantitative and qualitative evaluation showed that during treatment, there is a significant increase in airborne concentration of bacteria and fungi. The microflora included mainly gram-positive organisms (Staphylococcus epidermidis and Micrococcus spp.), gram-positive rod-shaped bacteria and those creating endospores as well as non-porous bacteria and mould fungi (Cladosporium and Penicillium). Conclusions Exposure to the microorganisms identified is not a significant occupational hazard for dental care professionals; however, evidence-based prevention measures are recommended.

54 citations

Journal ArticleDOI
TL;DR: It is concluded that the live birds were the major source ofBioaerosols in both LMS, with the fecal matter disposal systems attributing to the difference in bioaerosol composition.

54 citations

Journal ArticleDOI
TL;DR: The highest submicrometer particle concentrations were observed during dental grinding and they were on average 16 times higher than the indoor background.

54 citations

Journal ArticleDOI
TL;DR: In this article, a method and test system have been developed for the laboratory evaluation of the performance of bio-aerosol samplers, which differentiates between the overall physical sampling efficiency and the biological sampling efficiency (which reflects the survival of the test microorganisms during the sampling process).

54 citations


Network Information
Related Topics (5)
Aerosol
33.8K papers, 1.1M citations
83% related
Environmental exposure
37.4K papers, 1.8M citations
77% related
Denitrification
23.7K papers, 663.3K citations
69% related
Nitrate
28.2K papers, 840.7K citations
69% related
Particle size
69.8K papers, 1.7M citations
68% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023133
2022235
202195
202094
201989
201871