scispace - formally typeset
Search or ask a question
Topic

Bioaerosol

About: Bioaerosol is a research topic. Over the lifetime, 1347 publications have been published within this topic receiving 34791 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A preliminary research effort to develop a methodology for the measurement of nonvi-able biologically based PM, analyzing for mold and ragweed antigens and endotoxins and the quantification of the relationship between outdoor and indoor levels of bioaerosols.
Abstract: Exposures from indoor environments are a major issue for evaluating total long-term personal exposures to the fine fraction (<2.5 microm in aerodynamic diameter) of particulate matter (PM). It is widely accepted in the indoor air quality (IAQ) research community that biocontamination is one of the important indoor air pollutants. Major indoor air biocontaminants include mold, bacteria, dust mites, and other antigens. Once the biocontaminants or their metabolites become airborne, IAQ could be significantly deteriorated. The airborne biocontaminants or their metabolites can induce irritational, allergic, infectious, and chemical responses in exposed individuals. Biocontaminants, such as some mold spores or pollen grains, because of their size and mass, settle rapidly within the indoor environment. Over time they may become nonviable and fragmented by the process of desiccation. Desiccated nonviable fragments of organisms are common and can be toxic or allergenic, depending upon the specific organism or organism component. Once these smaller and lighter fragments of biological PM become suspended in air, they have a greater tendency to stay suspended. Although some bioaerosols have been identified, few have been quantitatively studied for their prevalence within the total indoor PM with time, or for their affinity to penetrate indoors. This paper describes a preliminary research effort to develop a methodology for the measurement of nonviable biologically based PM, analyzing for mold and ragweed antigens and endotoxins. The research objectives include the development of a set of analytical methods and the comparison of impactor media and sample size, and the quantification of the relationship between outdoor and indoor levels of bioaerosols. Indoor and outdoor air samples were passed through an Andersen nonviable cascade impactor in which particles from 0.2 to 9.0 microm were collected and analyzed. The presence of mold, ragweed, and endotoxin was found in all eight size ranges. The presence of respirable particles of mold and pollen found in the fine particle size range from 0.2 to 5.25 microm is evidence of fragmentation of larger source particles that are known allergens.

34 citations

Journal ArticleDOI
TL;DR: In this paper, an electrostatic precipitator with superhydrophobic surface (EPSS) was used to collect airborne fungal spores into small water droplets (10 and 40 μl) allowing achievement of very high concentration rates when sampling airborne bacteria.
Abstract: UNLABELLED We recently developed an electrostatic precipitator with superhydrophobic surface (EPSS), which collects particles into a 10- to 40-μl water droplet allowing achievement of very high concentration rates (defined as the ratio of particle concentration in the collection liquid vs. the airborne particle concentration per time unit) when sampling airborne bacteria. Here, we analyzed the performance of this sampler when collecting three commonly found fungal spores--Cladosporium cladosporioides, Penicillium melinii, and Aspergillus versicolor--under different operating conditions. We also adapted adenosine triphosphate (ATP)-based bioluminescence for the analysis of collection efficiency and the concentration rates. The collection efficiency ranged from 10 to 36% at a sampling flow rate of 10 l/min when the airborne fungal spore concentration was approximately 10(5)-10(6) spores/m(3) resulting in concentration rates in the range of 1 × 10(5)-3 × 10(5)/min for a 10-μl droplet. The collection efficiency was inversely proportional to the airborne spore concentration and it increased to above 60% for common ambient spore concentrations, e.g., 10(4)-10(5) spores/m(3). The spore concentrations determined by the ATP-based method were not statistically different from those determined by microscopy and allowed us to analyze spore concentrations that were too low to be reliably detected by microscopy. PRACTICAL IMPLICATIONS The new electrostatic precipitator with superhydrophobic surface (EPSS) collects airborne fungal spores into small water droplets (10 and 40 μl) allowing achievement of concentration rates that are higher than those of most currently available bioaerosol samplers. Biosamplers with high concentration rates enable detection of low ambient aerial bioaerosol concentrations in various environments, including indoors air, and would be useful for improved exposure assessment. A successful adaptation of the adenosine triphosphate (ATP)-based bioluminescence assay for the quantification of fungal spores from a specific species enables fast sample analysis in laboratory investigations. This rapid assay could be especially useful when investigating the performance of biological samplers as a function of multiple operational parameters.

34 citations

Journal ArticleDOI
TL;DR: Assessment of biochemical reaction tanks of six municipal wastewater treatment plants in the Yangtze River and Zhujiang deltas and the Jing-Jin-Ji region found the aerosolization of film drops produced by bursting of bubbles was the main reason for the generation of bioaerosols.
Abstract: Sampling was conducted from biochemical reaction tanks of six municipal wastewater treatment plants in the Yangtze River and Zhujiang deltas and the Jing-Jin-Ji region to assess their morphology, level, and composition. Morphological observations suggested that particles were scattered amorphously with C, O, and Si as the major elements. Bioaerosols are composed of spatially varying levels of microorganisms and chemicals. As the sampling height increased, the level of the components in the bioaerosols decreased. Wastewater in the biochemical reaction tanks was identified as an important source of bioaerosols using SourceTracker analysis. The aerosolization of film drops produced by bursting of bubbles was the main reason for the generation of bioaerosols. Increasing the aeration rate of water may promote bioaerosol generation. Relative humidity, temperature, wind speed, and solar illumination influenced the survival of bioaerosols. Large particle sedimentation and wind diffusion significantly decreased the atmospheric aerosol concentration. When the sampling point height increased from 0.1 m to 3.0 m, the concentrations of the microorganisms and total suspended particles decreased by 23.71% and 38.74%, respectively. Considerable attention should be paid to the control of total suspended particles and microorganisms in bioaerosols.

34 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized the most recent research on the health risks of bioaerosols emitted from wastewater treatment plants (WWTPs) in order to improve the control of such bio aerosols.
Abstract: Bioaerosols are defined as airborne particles (0.05–100 μn in size) of biological origin. They are considered potentially harmful to human health as they can contain pathogens such as bacteria, fungi, and viruses. This review summarizes the most recent research on the health risks of bioaerosols emitted from wastewater treatment plants (WWTPs) in order to improve the control of such bioaerosols. The concentration and size distribution of WWTP bioaerosols; their major emission sources, composition, and health risks; and considerations for future research are discussed. The major themes and findings in the literature are as follows: the major emission sources of WWTP bioaerosols include screen rooms, sludge-dewatering rooms, and aeration tanks; the bioaerosol concentrations in screen and sludge-dewatering rooms are higher than those outdoors. WWTP bioaerosols contain a variety of potentially pathogenic bacteria, fungi, antibiotic resistance genes, viruses, endotoxins, and toxic metal(loid)s. These potentially pathogenic substances spread with the bioaerosols, thereby posing health risks to workers and residents in and around the WWTP. Inhalation has been identified as the main exposure route, and children are at a higher risk of this than adults. Future studies should identify emerging contaminants, establish health risk assessments, and develop prevention and control systems.

34 citations

Journal ArticleDOI
TL;DR: Observations of wind gusts on the releasedPseudomonas syringae, spores ofBacillus subtilis var.niger, and fluorescent microspheres and FM showed they had similar particle size distributions and therefore FM could act as bacterial sized surrogates in particle dispersion.
Abstract: A bioaerosol research chamber was constructed and used to evaluate wind-gust release of previously depositedPseudomonas syringae, spores ofBacillus subtilis var.niger, and fluorescent microspheres (FM) on oat plants, and the airborne survival of the releasedP. syringae. Observations of wind gusts on the releasedBacillus spores and FM showed they had similar particle size distributions and therefore FM could act as bacterial sized surrogates in particle dispersion. Microscopic examination of the released FM containing particles revealed that 84% were associated with either fungal spores and hyphae were epiphytic on the plant, or with plant and soil debris. The release rate ofBacillus spores decreased as the number of gusts experienced by the plants increased, with a greater proportion of larger particles removed. The larger the particle associated with the releasedP. syringae, the longer the bacteria survived.

34 citations


Network Information
Related Topics (5)
Aerosol
33.8K papers, 1.1M citations
83% related
Environmental exposure
37.4K papers, 1.8M citations
77% related
Denitrification
23.7K papers, 663.3K citations
69% related
Nitrate
28.2K papers, 840.7K citations
69% related
Particle size
69.8K papers, 1.7M citations
68% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023133
2022235
202195
202094
201989
201871