Topic
Biodiversity
About: Biodiversity is a(n) research topic. Over the lifetime, 44848 publication(s) have been published within this topic receiving 1937437 citation(s). The topic is also known as: natural diversity.
Papers published on a yearly basis
Papers
More filters
TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Abstract: Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.
22,175 citations
University of Buenos Aires1, University of Alaska Fairbanks2, University of Chile3, University of California, Berkeley4, Environmental Defense Fund5, National Autonomous University of Mexico6, Technische Universität München7, New Mexico State University8, Duke University9, Arizona State University10, University of Notre Dame11, Stanford University12, Colorado State University13, Commonwealth Scientific and Industrial Research Organisation14
TL;DR: This study identified a ranking of the importance of drivers of change, aranking of the biomes with respect to expected changes, and the major sources of uncertainties in projections of future biodiversity change.
Abstract: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.
7,686 citations
Book•
01 Jan 2004Abstract: Summary As prehistoric cave paintings illustrate, our species has had an enduring appreciation of the variety and abundance of life on Earth. Today, however, concern is focused on the pressure humanity is placing on the natural world, and on the continued ability of ecosystems to deliver the services on which we all depend. To understand the extent of this ‘biodiversity crisis’ and develop strategies to ameliorate its impact, it is essential to be able to accurately measure biological diversity (a term often contracted to biodiversity) and make informed predictions about how and why this diversity varies over space and time.
7,050 citations
University of Leeds1, Royal Society for the Protection of Birds2, University of Cambridge3, Macquarie University4, Durham University5, University of the Witwatersrand6, Conservation International7, Stellenbosch University8, World Conservation Monitoring Centre9, National Autonomous University of Mexico10, University of Kansas11, James Cook University12
TL;DR: Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract: Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
6,567 citations
Western Washington University1, University of Alaska Fairbanks2, United States Forest Service3, University of Zurich4, Centre national de la recherche scientifique5, Natural Environment Research Council6, University of Notre Dame7, École Normale Supérieure8, Columbia University9, University of Helsinki10, United States Geological Survey11, University of Michigan12, Landcare Research13, Swedish University of Agricultural Sciences14
TL;DR: Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.
Abstract: Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.
6,315 citations