scispace - formally typeset
Search or ask a question

Showing papers on "Biodiversity published in 2016"


Journal ArticleDOI
11 Aug 2016-Nature
TL;DR: An analysis of threat information gathered for more than 8,000 species revealed that overexploitation and agriculture are by far the biggest drivers of biodiversity decline.
Abstract: The threats of old are still the dominant drivers of current species loss, indicates an analysis of IUCN Red List data by Sean Maxwell and colleagues.

1,180 citations


Journal ArticleDOI
TL;DR: The findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.
Abstract: Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.

1,119 citations


Journal ArticleDOI
Jingjing Liang1, Thomas W. Crowther2, Nicolas Picard3, Susan K. Wiser4, Mo Zhou1, Giorgio Alberti5, Ernst Detlef Schulze6, A. David McGuire7, Fabio Bozzato, Hans Pretzsch8, Sergio de-Miguel, Alain Paquette9, Bruno Hérault10, Michael Scherer-Lorenzen11, Christopher B. Barrett12, Henry B. Glick2, Geerten M. Hengeveld13, Gert-Jan Nabuurs13, Sebastian Pfautsch14, Helder Viana15, Helder Viana16, Alexander Christian Vibrans, Christian Ammer17, Peter Schall17, David David Verbyla7, N. M. Tchebakova18, Markus Fischer19, James V. Watson1, Han Y. H. Chen20, Xiangdong Lei, Mart-Jan Schelhaas13, Huicui Lu13, Damiano Gianelle, Elena I. Parfenova18, Christian Salas21, Eungul Lee1, Boknam Lee22, Hyun-Seok Kim, Helge Bruelheide23, David A. Coomes24, Daniel Piotto, Terry Sunderland25, Terry Sunderland26, Bernhard Schmid27, Sylvie Gourlet-Fleury, Bonaventure Sonké28, Rebecca Tavani3, Jun Zhu29, Susanne Brandl8, Jordi Vayreda, Fumiaki Kitahara, Eric B. Searle20, Victor J. Neldner30, Michael R. Ngugi30, Christopher Baraloto31, Christopher Baraloto32, Lorenzo Frizzera, Radomir Bałazy33, Jacek Oleksyn34, Jacek Oleksyn35, Tomasz Zawiła-Niedźwiecki36, Olivier Bouriaud37, Filippo Bussotti38, Leena Finér, Bogdan Jaroszewicz39, Tommaso Jucker24, Fernando Valladares40, Fernando Valladares41, Andrzej M. Jagodziński35, Pablo Luis Peri42, Pablo Luis Peri43, Pablo Luis Peri44, Christelle Gonmadje28, William Marthy45, Timothy G. O'Brien45, Emanuel H. Martin46, Andrew R. Marshall47, Francesco Rovero, Robert Bitariho, Pascal A. Niklaus27, Patricia Alvarez-Loayza48, Nurdin Chamuya49, Renato Valencia50, Frédéric Mortier, Verginia Wortel, Nestor L. Engone-Obiang51, Leandro Valle Ferreira52, David E. Odeke, R. Vásquez, Simon L. Lewis53, Simon L. Lewis54, Peter B. Reich34, Peter B. Reich14 
West Virginia University1, Yale University2, Food and Agriculture Organization3, Landcare Research4, University of Udine5, Max Planck Society6, University of Alaska Fairbanks7, Technische Universität München8, Université du Québec à Montréal9, University of the French West Indies and Guiana10, University of Freiburg Faculty of Biology11, Cornell University12, Wageningen University and Research Centre13, University of Sydney14, University of Trás-os-Montes and Alto Douro15, Polytechnic Institute of Viseu16, University of Göttingen17, Russian Academy of Sciences18, Oeschger Centre for Climate Change Research19, Lakehead University20, University of La Frontera21, Seoul National University22, Martin Luther University of Halle-Wittenberg23, University of Cambridge24, James Cook University25, Center for International Forestry Research26, University of Zurich27, University of Yaoundé I28, University of Wisconsin-Madison29, Queensland Government30, Institut national de la recherche agronomique31, Florida International University32, Forest Research Institute33, University of Minnesota34, Polish Academy of Sciences35, Warsaw University of Life Sciences36, Ştefan cel Mare University of Suceava37, University of Florence38, University of Warsaw39, King Juan Carlos University40, Spanish National Research Council41, National Scientific and Technical Research Council42, International Trademark Association43, National University of Austral Patagonia44, Wildlife Conservation Society45, College of African Wildlife Management46, University of York47, Durham University48, Ontario Ministry of Natural Resources49, Pontificia Universidad Católica del Ecuador50, Centre national de la recherche scientifique51, Museu Paraense Emílio Goeldi52, University College London53, University of Leeds54
14 Oct 2016-Science
TL;DR: A consistent positive concave-down effect of biodiversity on forest productivity across the world is revealed, showing that a continued biodiversity loss would result in an accelerating decline in forest productivity worldwide.
Abstract: The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities.

889 citations


Journal ArticleDOI
11 Nov 2016-Science
TL;DR: The full range and scale of climate change effects on global biodiversity that have been observed in natural systems are described, and a set of core ecological processes that underpin ecosystem functioning and support services to people are identified.
Abstract: Most ecological processes now show responses to anthropogenic climate change. In terrestrial, freshwater, and marine ecosystems, species are changing genetically, physiologically, morphologically, and phenologically and are shifting their distributions, which affects food webs and results in new interactions. Disruptions scale from the gene to the ecosystem and have documented consequences for people, including unpredictable fisheries and crop yields, loss of genetic diversity in wild crop varieties, and increasing impacts of pests and diseases. In addition to the more easily observed changes, such as shifts in flowering phenology, we argue that many hidden dynamics, such as genetic changes, are also taking place. Understanding shifts in ecological processes can guide human adaptation strategies. In addition to reducing greenhouse gases, climate action and policy must therefore focus equally on strategies that safeguard biodiversity and ecosystems.

815 citations


Journal ArticleDOI
TL;DR: How beta-diversity is impacted by human activities, including farming, selective logging, urbanization, species invasions, overhunting, and climate change is reviewed.
Abstract: To design robust protected area networks, accurately measure species losses, or understand the processes that maintain species diversity, conservation science must consider the organization of biodiversity in space. Central is beta-diversity--the component of regional diversity that accumulates from compositional differences between local species assemblages. We review how beta-diversity is impacted by human activities, including farming, selective logging, urbanization, species invasions, overhunting, and climate change. Beta-diversity increases, decreases, or remains unchanged by these impacts, depending on the balance of processes that cause species composition to become more different (biotic heterogenization) or more similar (biotic homogenization) between sites. While maintaining high beta-diversity is not always a desirable conservation outcome, understanding beta-diversity is essential for protecting regional diversity and can directly assist conservation planning.

804 citations


Journal ArticleDOI
TL;DR: This work synthesizes the potential of soil organisms to enhance ecosystem service delivery and demonstrates that soil biodiversity promotes multiple ecosystem functions simultaneously (i.e., ecosystem multifunctionality) and applies the concept of ecological intensification to soils.
Abstract: Soil organisms are an integral component of ecosystems, but their activities receive little recognition in agricultural management strategies. Here we synthesize the potential of soil organisms to enhance ecosystem service delivery and demonstrate that soil biodiversity promotes multiple ecosystem functions simultaneously (i.e., ecosystem multifunctionality). We apply the concept of ecological intensification to soils and we develop strategies for targeted exploitation of soil biological traits. We compile promising approaches to enhance agricultural sustainability through the promotion of soil biodiversity and targeted management of soil community composition. We present soil ecological engineering as a concept to generate human land-use systems, which can serve immediate human needs while minimizing environmental impacts.

775 citations


Journal ArticleDOI
TL;DR: It is shown that alien species are the second most common threat associated with species that have gone completely extinct from these taxa since AD 1500, and for vertebrate extinctions overall.
Abstract: We assessed the prevalence of alien species as a driver of recent extinctions in five major taxa (plants, amphibians, reptiles, birds and mammals), using data from the IUCN Red List. Our results show that alien species are the second most common threat associated with species that have gone completely extinct from these taxa since AD 1500. Aliens are the most common threat associated with extinctions in three of the five taxa analysed, and for vertebrate extinctions overall.

774 citations


Journal ArticleDOI
15 Jul 2016-Science
TL;DR: It is estimated that land use and related pressures have already reduced local biodiversity intactness—the average proportion of natural biodiversity remaining in local ecosystems—beyond its recently proposed planetary boundary across 58.1% of the world’s land surface, where 71.4%) of the human population live.
Abstract: Land use and related pressures have reduced local terrestrial biodiversity, but it is unclear how the magnitude of change relates to the recently proposed planetary boundary (“safe limit”). We estimate that land use and related pressures have already reduced local biodiversity intactness—the average proportion of natural biodiversity remaining in local ecosystems—beyond its recently proposed planetary boundary across 58.1% of the world’s land surface, where 71.4% of the human population live. Biodiversity intactness within most biomes (especially grassland biomes), most biodiversity hotspots, and even some wilderness areas is inferred to be beyond the boundary. Such widespread transgression of safe limits suggests that biodiversity loss, if unchecked, will undermine efforts toward long-term sustainable development.

714 citations


Journal ArticleDOI
TL;DR: A global metaanalysis of the impacts of invasive mammalian predators on biodiversity reveals cats, rodents, dogs, and pigs have the most pervasive impacts, and endemic island faunas are most vulnerable to invasive predators.
Abstract: Invasive species threaten biodiversity globally, and invasive mammalian predators are particularly damaging, having contributed to considerable species decline and extinction. We provide a global metaanalysis of these impacts and reveal their full extent. Invasive predators are implicated in 87 bird, 45 mammal, and 10 reptile species extinctions—58% of these groups’ contemporary extinctions worldwide. These figures are likely underestimated because 23 critically endangered species that we assessed are classed as “possibly extinct.” Invasive mammalian predators endanger a further 596 species at risk of extinction, with cats, rodents, dogs, and pigs threatening the most species overall. Species most at risk from predators have high evolutionary distinctiveness and inhabit insular environments. Invasive mammalian predators are therefore important drivers of irreversible loss of phylogenetic diversity worldwide. That most impacted species are insular indicates that management of invasive predators on islands should be a global conservation priority. Understanding and mitigating the impact of invasive mammalian predators is essential for reducing the rate of global biodiversity loss.

694 citations


Journal ArticleDOI
TL;DR: The synthesis suggests a strong negative influence of invasive species on the abundance of aquatic communities, particularly macrophytes, zooplankton and fish, and proposes a framework of positive and negative links between invasive species at four trophic positions and the five different components of recipient communities.
Abstract: The introduction of invasive species, which often differ functionally from the components of the recipient community, generates ecological impacts that propagate along the food web. This review aims to determine how consistent the impacts of aquatic invasions are across taxa and habitats. To that end, we present a global meta-analysis from 151 publications (733 cases), covering a wide range of invaders (primary producers, filter collectors, omnivores and predators), resident aquatic community components (macrophytes, phytoplankton, zooplankton, benthic invertebrates and fish) and habitats (rivers, lakes and estuaries). Our synthesis suggests a strong negative influence of invasive species on the abundance of aquatic communities, particularly macrophytes, zooplankton and fish. In contrast, there was no general evidence for a decrease in species diversity in invaded habitats, suggesting a time lag between rapid abundance changes and local extinctions. Invaded habitats showed increased water turbidity, nitrogen and organic matter concentration, which are related to the capacity of invaders to transform habitats and increase eutrophication. The expansion of invasive macrophytes caused the largest decrease in fish abundance, the filtering activity of filter collectors depleted planktonic communities, omnivores (including both facultative and obligate herbivores) were responsible for the greatest decline in macrophyte abundance, and benthic invertebrates were most negatively affected by the introduction of new predators. These impacts were relatively consistent across habitats and experimental approaches. Based on our results, we propose a framework of positive and negative links between invasive species at four trophic positions and the five different components of recipient communities. This framework incorporates both direct biotic interactions (predation, competition, grazing) and indirect changes to the water physicochemical conditions mediated by invaders (habitat alteration). Considering the strong trophic links that characterize aquatic ecosystems, this framework is relevant to anticipate the far-reaching consequences of biological invasions on the structure and functionality of aquatic ecosystems.

686 citations


10 Aug 2016
TL;DR: In this paper, the authors used data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events, and found that biodiversity increased ecosystem resilience for a broad range of climate events.
Abstract: It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16–32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

Journal ArticleDOI
TL;DR: This work focuses on four major phases that witnessed broad anthropogenic alterations to biodiversity—the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks.
Abstract: The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens. A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity—the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences.

Journal ArticleDOI
25 Aug 2016-Nature
TL;DR: It is demonstrated that primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services.
Abstract: Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.

Journal ArticleDOI
27 Jul 2016-PLOS ONE
TL;DR: To guide interventions aimed at reducing tropical deforestation due to oil palm, recent expansions are analysed and likely future ones are modelled, and critical areas for biodiversity that oil palm expansion threatens are identified.
Abstract: Palm oil is the most widely traded vegetable oil globally, with demand projected to increase substantially in the future. Almost all oil palm grows in areas that were once tropical moist forests, some of them quite recently. The conversion to date, and future expansion, threatens biodiversity and increases greenhouse gas emissions. Today, consumer pressure is pushing companies toward deforestation-free sources of palm oil. To guide interventions aimed at reducing tropical deforestation due to oil palm, we analysed recent expansions and modelled likely future ones. We assessed sample areas to find where oil palm plantations have recently replaced forests in 20 countries, using a combination of high-resolution imagery from Google Earth and Landsat. We then compared these trends to countrywide trends in FAO data for oil palm planted area. Finally, we assessed which forests have high agricultural suitability for future oil palm development, which we refer to as vulnerable forests, and identified critical areas for biodiversity that oil palm expansion threatens. Our analysis reveals regional trends in deforestation associated with oil palm agriculture. In Southeast Asia, 45% of sampled oil palm plantations came from areas that were forests in 1989. For South America, the percentage was 31%. By contrast, in Mesoamerica and Africa, we observed only 2% and 7% of oil palm plantations coming from areas that were forest in 1989. The largest areas of vulnerable forest are in Africa and South America. Vulnerable forests in all four regions of production contain globally high concentrations of mammal and bird species at risk of extinction. However, priority areas for biodiversity conservation differ based on taxa and criteria used. Government regulation and voluntary market interventions can help incentivize the expansion of oil palm plantations in ways that protect biodiversity-rich ecosystems.

Journal ArticleDOI
23 Sep 2016-Science
TL;DR: Using 835 inventories covering 4660 species of woody plants, marked floristic turnover among inventories and regions indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests.
Abstract: Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than in other neotropical biomes, such as savanna. Such high floristic turnover indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests. Our results provide a scientific framework within which national decision-makers can contextualize the floristic significance of their dry forest at a regional and continental scale.

Journal ArticleDOI
TL;DR: Using a new global biodiversity database with unprecedented geographic and taxonomic coverage, four biodiversity measures are compared at sites sampled in multiple land uses inside and outside protected areas to reinforce the global importance of protected areas but suggest that protection does not consistently benefit species with small ranges or increase the variety of ecological niches.
Abstract: Protected areas are widely considered essential for biodiversity conservation. However, few global studies have demonstrated that protection benefits a broad range of species. Here, using a new global biodiversity database with unprecedented geographic and taxonomic coverage, we compare four biodiversity measures at sites sampled in multiple land uses inside and outside protected areas. Globally, species richness is 10.6% higher and abundance 14.5% higher in samples taken inside protected areas compared with samples taken outside, but neither rarefaction-based richness nor endemicity differ significantly. Importantly, we show that the positive effects of protection are mostly attributable to differences in land use between protected and unprotected sites. Nonetheless, even within some human-dominated land uses, species richness and abundance are higher in protected sites. Our results reinforce the global importance of protected areas but suggest that protection does not consistently benefit species with small ranges or increase the variety of ecological niches.

Journal ArticleDOI
TL;DR: A global literature review on the impact of three of the most important disturbance agents on 13 different ecosystem services and three indicators of biodiversity in forests of the boreal, cool‐ and warm‐temperate biomes reveals a ‘disturbance paradox’, documenting that disturbances can put ecosystem services at risk while simultaneously facilitating biodiversity.
Abstract: In many parts of the world forest disturbance regimes have intensified recently, and future climatic changes are expected to amplify this development further in the coming decades. These changes are increasingly challenging the main objectives of forest ecosystem management, which are to provide ecosystem services sustainably to society and maintain the biological diversity of forests. Yet a comprehensive understanding of how disturbances affect these primary goals of ecosystem management is still lacking. We conducted a global literature review on the impact of three of the most important disturbance agents (fire, wind, and bark beetles) on 13 different ecosystem services and three indicators of biodiversity in forests of the boreal, cool- and warm-temperate biomes. Our objectives were to (i) synthesize the effect of natural disturbances on a wide range of possible objectives of forest management, and (ii) investigate standardized effect sizes of disturbance for selected indicators via a quantitative meta-analysis. We screened a total of 1958 disturbance studies published between 1981 and 2013, and reviewed 478 in detail. We first investigated the overall effect of disturbances on individual ecosystem services and indicators of biodiversity by means of independence tests, and subsequently examined the effect size of disturbances on indicators of carbon storage and biodiversity by means of regression analysis. Additionally, we investigated the effect of commonly used approaches of disturbance management, i.e. salvage logging and prescribed burning. We found that disturbance impacts on ecosystem services are generally negative, an effect that was supported for all categories of ecosystem services, i.e. supporting, provisioning, regulating, and cultural services (P < 0.001). Indicators of biodiversity, i.e. species richness, habitat quality and diversity indices, on the other hand were found to be influenced positively by disturbance (P < 0.001). Our analyses thus reveal a 'disturbance paradox', documenting that disturbances can put ecosystem services at risk while simultaneously facilitating biodiversity. A detailed investigation of disturbance effect sizes on carbon storage and biodiversity further underlined these divergent effects of disturbance. While a disturbance event on average causes a decrease in total ecosystem carbon by 38.5% (standardized coefficient for stand-replacing disturbance), it on average increases overall species richness by 35.6%. Disturbance-management approaches such as salvage logging and prescribed burning were neither found significantly to mitigate negative effects on ecosystem services nor to enhance positive effects on biodiversity, and thus were not found to alleviate the disturbance paradox. Considering that climate change is expected to intensify natural disturbance regimes, our results indicate that biodiversity will generally benefit from such changes while a sustainable provisioning of ecosystem services might come increasingly under pressure. This underlines that disturbance risk and resilience require increased attention in ecosystem management in the future, and that new approaches to addressing the disturbance paradox in management are needed.

Journal ArticleDOI
TL;DR: The dominance of diatoms as a major photosynthetic group and identify the most widespread and diverse genera are confirmed and a new estimate of marine planktonic diatom diversity and a global view of their distribution in the world’s ocean is provided.
Abstract: Diatoms (Bacillariophyta) constitute one of the most diverse and ecologically important groups of phytoplankton. They are considered to be particularly important in nutrient-rich coastal ecosystems and at high latitudes, but considerably less so in the oligotrophic open ocean. The Tara Oceans circumnavigation collected samples from a wide range of oceanic regions using a standardized sampling procedure. Here, a total of ∼12 million diatom V9-18S ribosomal DNA (rDNA) ribotypes, derived from 293 size-fractionated plankton communities collected at 46 sampling sites across the global ocean euphotic zone, have been analyzed to explore diatom global diversity and community composition. We provide a new estimate of diversity of marine planktonic diatoms at 4,748 operational taxonomic units (OTUs). Based on the total assigned ribotypes, Chaetoceros was the most abundant and diverse genus, followed by Fragilariopsis, Thalassiosira, and Corethron. We found only a few cosmopolitan ribotypes displaying an even distribution across stations and high abundance, many of which could not be assigned with confidence to any known genus. Three distinct communities from South Pacific, Mediterranean, and Southern Ocean waters were identified that share a substantial percentage of ribotypes within them. Sudden drops in diversity were observed at Cape Agulhas, which separates the Indian and Atlantic Oceans, and across the Drake Passage between the Atlantic and Southern Oceans, indicating the importance of these ocean circulation choke points in constraining diatom distribution and diversity. We also observed high diatom diversity in the open ocean, suggesting that diatoms may be more relevant in these oceanic systems than generally considered.

Journal ArticleDOI
TL;DR: Ocean warming will cause widespread changes in species richness and assemblage composition over coming decades, with important implications for both conservation management and international ocean governance as mentioned in this paper, and this is a major concern.
Abstract: Ocean warming will cause widespread changes in species richness and assemblage composition over coming decades, with important implications for both conservation management and international ocean governance.

Journal ArticleDOI
TL;DR: It is shown that campo rupestre is fully comparable to and remarkably convergent with both fynbos and kwongkan, and fulfills the criteria for a classic OCBIL.
Abstract: Botanists, ecologists and evolutionary biologists are familiar with the astonishing species richness and endemism of the fynbos of the Cape Floristic Region and the ancient and unique flora of the kwongkan of south-western Australia. These regions represent old climatically-buffered infertile landscapes (OCBILs) that are the basis of a general hypothesis to explain their richness and endemism. However, few ecologists are familiar with the campo rupestre of central and eastern Brazil, an extremely old mountaintop ecosystem that is both a museum of ancient lineages and a cradle of continuing diversification of endemic lineages. Diversification of some lineages of campo rupestre pre-dates diversification of lowland cerrado, suggesting it may be the most ancient open vegetation in eastern South America. This vegetation comprises more than 5000 plant species, nearly 15 % of Brazil’s plant diversity, in an area corresponding to 0.78 % of its surface. Reviewing empirical data, we scrutinise five predictions of the OCBIL theory, and show that campo rupestre is fully comparable to and remarkably convergent with both fynbos and kwongkan, and fulfills the criteria for a classic OCBIL. The increasing threats to campo rupestre are compromising ecosystem services and we argue for the implementation of more effective conservation and restoration strategies.

Journal ArticleDOI
TL;DR: The figures suggest that the conservation status of South American freshwater fish faunas is better than in most other regions of the world, but the marine fishes are as threatened as elsewhere.
Abstract: The freshwater and marine fish faunas of South America are the most diverse on Earth, with current species richness estimates standing above 9100 species. In addition, over the last decade at least 100 species were described every year. There are currently about 5160 freshwater fish species, and the estimate for the freshwater fish fauna alone points to a final diversity between 8000 and 9000 species. South America also has c. 4000 species of marine fishes. The mega-diverse fish faunas of South America evolved over a period of >100 million years, with most lineages tracing origins to Gondwana and the adjacent Tethys Sea. This high diversity was in part maintained by escaping the mass extinctions and biotic turnovers associated with Cenozoic climate cooling, the formation of boreal and temperate zones at high latitudes and aridification in many places at equatorial latitudes. The fresh waters of the continent are divided into 13 basin complexes, large basins consolidated as a single unit plus historically connected adjacent coastal drainages, and smaller coastal basins grouped together on the basis of biogeographic criteria. Species diversity, endemism, noteworthy groups and state of knowledge of each basin complex are described. Marine habitats around South America, both coastal and oceanic, are also described in terms of fish diversity, endemism and state of knowledge. Because of extensive land use changes, hydroelectric damming, water divergence for irrigation, urbanization, sedimentation and overfishing 4-10% of all fish species in South America face some degree of extinction risk, mainly due to habitat loss and degradation. These figures suggest that the conservation status of South American freshwater fish faunas is better than in most other regions of the world, but the marine fishes are as threatened as elsewhere. Conserving the remarkable aquatic habitats and fishes of South America is a growing challenge in face of the rapid anthropogenic changes of the 21st century, and deserves attention from conservationists and policy makers.

Journal ArticleDOI
TL;DR: The number of species places Mexico as the country with the fourth largest floristic richness in the world, although among the non-insular countries, by its number of endemic species (about 50%) is second only surpassed by South Africa.
Abstract: An updated inventory of the native vascular plants of Mexico records 23,314 species, distributed in 2,854 genera, 297 families, and 73 orders. The flora includes 1,039 species of ferns and lycophytes, 149 gymnosperms, and 22,126 angiosperms. On average, the number of synonyms per species is 1.3 (mode = 1). The number of species places Mexico as the country with the fourth largest floristic richness in the world, although among the non-insular countries, by its number of endemic species (about 50%) is second only surpassed by South Africa. The species distribution among higher taxonomic categories, and the richness and endemism values in the 32 states of Mexico are discussed. This compilation allows us to assess the flora's contribution to the overall Mexican biodiversity.

Journal ArticleDOI
TL;DR: Overall, the results suggest that local extinctions related to climate change are already widespread, even though levels of climate change so far are modest relative to those predicted in the next 100 years.
Abstract: Current climate change may be a major threat to global biodiversity, but the extent of species loss will depend on the details of how species respond to changing climates. For example, if most species can undergo rapid change in their climatic niches, then extinctions may be limited. Numerous studies have now documented shifts in the geographic ranges of species that were inferred to be related to climate change, especially shifts towards higher mean elevations and latitudes. Many of these studies contain valuable data on extinctions of local populations that have not yet been thoroughly explored. Specifically, overall range shifts can include range contractions at the "warm edges" of species' ranges (i.e., lower latitudes and elevations), contractions which occur through local extinctions. Here, data on climate-related range shifts were used to test the frequency of local extinctions related to recent climate change. The results show that climate-related local extinctions have already occurred in hundreds of species, including 47% of the 976 species surveyed. This frequency of local extinctions was broadly similar across climatic zones, clades, and habitats but was significantly higher in tropical species than in temperate species (55% versus 39%), in animals than in plants (50% versus 39%), and in freshwater habitats relative to terrestrial and marine habitats (74% versus 46% versus 51%). Overall, these results suggest that local extinctions related to climate change are already widespread, even though levels of climate change so far are modest relative to those predicted in the next 100 years. These extinctions will presumably become much more prevalent as global warming increases further by roughly 2-fold to 5-fold over the coming decades.

Journal ArticleDOI
TL;DR: In this article, the authors identify five hypotheses for when and why natural habitat can fail to support biological pest control, and illustrate each with case studies from the literature: (1) pest populations have no effective natural enemies in the region, (2) natural habitat is a greater source of pests than natural enemies, (3) crops provide more resources for natural enemies than does natural habitat, (4) natural habitats is insufficient in amount, proximity, composition, or configuration to provide large enough enemy populations needed for pest control and (5) agricultural practices counteract enemy establishment and bioc

Journal ArticleDOI
TL;DR: The evidence that supports the roles of different candidate drivers of fungal diversity at a range of spatial scales is considered, as well as the role of dispersal limitation in maintaining regional endemism and influencing local community assembly.
Abstract: Fungi represent a large proportion of the genetic diversity on Earth and fungal activity influences the structure of plant and animal communities, as well as rates of ecosystem processes. Large-scale DNA-sequencing datasets are beginning to reveal the dimensions of fungal biodiversity, which seem to be fundamentally different to bacteria, plants and animals. In this Review, we describe the patterns of fungal biodiversity that have been revealed by molecular-based studies. Furthermore, we consider the evidence that supports the roles of different candidate drivers of fungal diversity at a range of spatial scales, as well as the role of dispersal limitation in maintaining regional endemism and influencing local community assembly. Finally, we discuss the ecological mechanisms that are likely to be responsible for the high heterogeneity that is observed in fungal communities at local scales.

Journal ArticleDOI
TL;DR: It is concluded that a systematic effort is needed to improve the conservation and availability of crop wild relatives for use in plant breeding, using occurrence information collected from biodiversity, herbarium and gene bank databases.
Abstract: The wild relatives of domesticated crops possess genetic diversity useful for developing more productive, nutritious and resilient crop varieties. However, their conservation status and availability for utilization are a concern, and have not been quantified globally. Here, we model the global distribution of 1,076 taxa related to 81 crops, using occurrence information collected from biodiversity, herbarium and gene bank databases. We compare the potential geographic and ecological diversity encompassed in these distributions with that currently accessible in gene banks, as a means to estimate the comprehensiveness of the conservation of genetic diversity. Our results indicate that the diversity of crop wild relatives is poorly represented in gene banks. For 313 (29.1% of total) taxa associated with 63 crops, no germplasm accessions exist, and a further 257 (23.9%) are represented by fewer than ten accessions. Over 70% of taxa are identified as high priority for further collecting in order to improve their representation in gene banks, and over 95% are insufficiently represented in regard to the full range of geographic and ecological variation in their native distributions. The most critical collecting gaps occur in the Mediterranean and the Near East, western and southern Europe, Southeast and East Asia, and South America. We conclude that a systematic effort is needed to improve the conservation and availability of crop wild relatives for use in plant breeding.

Journal ArticleDOI
TL;DR: It is shown for a subset of these families that eDNA samples overcome spatial autocorrelation biases associated with the classical community assessments by integrating biodiversity information over space, suggesting eDNA in river water also incorporates biodiversity information across terrestrial and aquatic biomes.
Abstract: DNA sampled from the environment (eDNA) is a useful way to uncover biodiversity patterns. By combining a conceptual model and empirical data, we test whether eDNA transported in river networks can be used as an integrative way to assess eukaryotic biodiversity for broad spatial scales and across the land–water interface. Using an eDNA metabarcode approach, we detect 296 families of eukaryotes, spanning 19 phyla across the catchment of a river. We show for a subset of these families that eDNA samples overcome spatial autocorrelation biases associated with the classical community assessments by integrating biodiversity information over space. In addition, we demonstrate that many terrestrial species are detected; thus suggesting eDNA in river water also incorporates biodiversity information across terrestrial and aquatic biomes. Environmental DNA transported in river networks offers a novel and spatially integrated way to assess the total biodiversity for whole landscapes and will transform biodiversity data acquisition in ecology. DNA of a given organism can be detected from its surroundings. Here, Deiner and colleagues use so-called environmental DNA to estimate biodiversity of both aquatic and terrestrial organisms in and near river.

Journal ArticleDOI
TL;DR: This is the first study demonstrating that the diversity of different microbial groups has significantly lower rates of turnover across temperature gradients than other major taxa, which has important implications for assessing the effects of human-caused changes in climate, land use and other factors.
Abstract: Climate warming is increasingly leading to marked changes in plant and animal biodiversity, but it remains unclear how temperatures affect microbial biodiversity, particularly in terrestrial soils. Here we show that, in accordance with metabolic theory of ecology, taxonomic and phylogenetic diversity of soil bacteria, fungi and nitrogen fixers are all better predicted by variation in environmental temperature than pH. However, the rates of diversity turnover across the global temperature gradients are substantially lower than those recorded for trees and animals, suggesting that the diversity of plant, animal and soil microbial communities show differential responses to climate change. To the best of our knowledge, this is the first study demonstrating that the diversity of different microbial groups has significantly lower rates of turnover across temperature gradients than other major taxa, which has important implications for assessing the effects of human-caused changes in climate, land use and other factors.

Journal ArticleDOI
TL;DR: The global benefits of an increasingly used conservation action to stem biodiversity loss: eradication of invasive mammals on islands are estimated to be 107 highly threatened birds, mammals, and reptiles on the IUCN Red List—6% of all these highly threatened species—likely have benefitted from invasive mammal eradications on islands.
Abstract: More than US$21 billion is spent annually on biodiversity conservation. Despite their importance for preventing or slowing extinctions and preserving biodiversity, conservation interventions are rarely assessed systematically for their global impact. Islands house a disproportionately higher amount of biodiversity compared with mainlands, much of which is highly threatened with extinction. Indeed, island species make up nearly two-thirds of recent extinctions. Islands therefore are critical targets of conservation. We used an extensive literature and database review paired with expert interviews to estimate the global benefits of an increasingly used conservation action to stem biodiversity loss: eradication of invasive mammals on islands. We found 236 native terrestrial insular faunal species (596 populations) that benefitted through positive demographic and/or distributional responses from 251 eradications of invasive mammals on 181 islands. Seven native species (eight populations) were negatively impacted by invasive mammal eradication. Four threatened species had their International Union for the Conservation of Nature (IUCN) Red List extinction-risk categories reduced as a direct result of invasive mammal eradication, and no species moved to a higher extinction-risk category. We predict that 107 highly threatened birds, mammals, and reptiles on the IUCN Red List-6% of all these highly threatened species-likely have benefitted from invasive mammal eradications on islands. Because monitoring of eradication outcomes is sporadic and limited, the impacts of global eradications are likely greater than we report here. Our results highlight the importance of invasive mammal eradication on islands for protecting the world's most imperiled fauna.

Journal ArticleDOI
30 Nov 2016-Nature
TL;DR: It is shown that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity.
Abstract: Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.