scispace - formally typeset
Search or ask a question

Showing papers on "Biodiversity published in 2021"


Journal ArticleDOI
TL;DR: This paper recommends a set of urgent policy actions that promote clean water, conserve watershed services, and restore freshwater ecosystems and their vital services.
Abstract: Freshwater ecosystems provide irreplaceable services for both nature and society. The quality and quantity of freshwater affect biogeochemical processes and ecological dynamics that determine biodiversity, ecosystem productivity, and human health and welfare at local, regional and global scales. Freshwater ecosystems and their associated riparian habitats are amongst the most biologically diverse on Earth, and have inestimable economic, health, cultural, scientific and educational values. Yet human impacts to lakes, rivers, streams, wetlands and groundwater are dramatically reducing biodiversity and robbing critical natural resources and services from current and future generations. Freshwater biodiversity is declining rapidly on every continent and in every major river basin on Earth, and this degradation is occurring more rapidly than in terrestrial ecosystems. Currently, about one third of all global freshwater discharges pass through human agricultural, industrial or urban infrastructure. About one fifth of the Earth's arable land is now already equipped for irrigation, including all the most productive lands, and this proportion is projected to surpass one third by midcentury to feed the rapidly expanding populations of humans and commensal species, especially poultry and ruminant livestock. Less than one fifth of the world's preindustrial freshwater wetlands remain, and this proportion is projected to decline to under one tenth by midcentury, with imminent threats from water transfer megaprojects in Brazil and India, and coastal wetland drainage megaprojects in China. The Living Planet Index for freshwater vertebrate populations has declined to just one third that of 1970, and is projected to sink below one fifth by midcentury. A linear model of global economic expansion yields the chilling prediction that human utilization of critical freshwater resources will approach one half of the Earth's total capacity by midcentury. Although the magnitude and growth of the human freshwater footprint are greater than is generally understood by policy makers, the news media, or the general public, slowing and reversing dramatic losses of freshwater species and ecosystems is still possible. We recommend a set of urgent policy actions that promote clean water, conserve watershed services, and restore freshwater ecosystems and their vital services. Effective management of freshwater resources and ecosystems must be ranked amongst humanity's highest priorities.

325 citations


Journal ArticleDOI
17 Mar 2021-Nature
TL;DR: In this paper, a conservation planning framework is developed to prioritize highly protected marine protected areas in places that would result in multiple benefits today and in the future, by protecting biodiversity, boosting the yield of fisheries and securing marine carbon stocks that are at risk from human activities.
Abstract: The ocean contains unique biodiversity, provides valuable food resources and is a major sink for anthropogenic carbon. Marine protected areas (MPAs) are an effective tool for restoring ocean biodiversity and ecosystem services1,2, but at present only 2.7% of the ocean is highly protected3. This low level of ocean protection is due largely to conflicts with fisheries and other extractive uses. To address this issue, here we developed a conservation planning framework to prioritize highly protected MPAs in places that would result in multiple benefits today and in the future. We find that a substantial increase in ocean protection could have triple benefits, by protecting biodiversity, boosting the yield of fisheries and securing marine carbon stocks that are at risk from human activities. Our results show that most coastal nations contain priority areas that can contribute substantially to achieving these three objectives of biodiversity protection, food provision and carbon storage. A globally coordinated effort could be nearly twice as efficient as uncoordinated, national-level conservation planning. Our flexible prioritization framework could help to inform both national marine spatial plans4 and global targets for marine conservation, food security and climate action. Using a globally coordinated strategic conservation framework to plan an increase in ocean protection through marine protected areas can yield benefits for biodiversity, food provisioning and carbon storage.

265 citations


Journal ArticleDOI
27 Jan 2021-Nature
TL;DR: The Living Planet Index (LPI) is a measure of changes in abundance aggregated from 57 abundance time-series datasets for 18 oceanic shark and ray species and the Red List Index (Red List Index) is calculated for all 31 oceanic species of sharks and rays.
Abstract: Overfishing is the primary cause of marine defaunation, yet declines in and increasing extinction risks of individual species are difficult to measure, particularly for the largest predators found in the high seas1-3. Here we calculate two well-established indicators to track progress towards Aichi Biodiversity Targets and Sustainable Development Goals4,5: the Living Planet Index (a measure of changes in abundance aggregated from 57 abundance time-series datasets for 18 oceanic shark and ray species) and the Red List Index (a measure of change in extinction risk calculated for all 31 oceanic species of sharks and rays). We find that, since 1970, the global abundance of oceanic sharks and rays has declined by 71% owing to an 18-fold increase in relative fishing pressure. This depletion has increased the global extinction risk to the point at which three-quarters of the species comprising this functionally important assemblage are threatened with extinction. Strict prohibitions and precautionary science-based catch limits are urgently needed to avert population collapse6,7, avoid the disruption of ecological functions and promote species recovery8,9.

259 citations


Journal ArticleDOI
TL;DR: In this paper, the authors use the most up-to-date, spatially explicit global reconstruction of historical human populations and land use to show that this paradigm is likely wrong.
Abstract: Archaeological and paleoecological evidence shows that by 10,000 BCE, all human societies employed varying degrees of ecologically transformative land use practices, including burning, hunting, species propagation, domestication, cultivation, and others that have left long-term legacies across the terrestrial biosphere. Yet, a lingering paradigm among natural scientists, conservationists, and policymakers is that human transformation of terrestrial nature is mostly recent and inherently destructive. Here, we use the most up-to-date, spatially explicit global reconstruction of historical human populations and land use to show that this paradigm is likely wrong. Even 12,000 y ago, nearly three quarters of Earth’s land was inhabited and therefore shaped by human societies, including more than 95% of temperate and 90% of tropical woodlands. Lands now characterized as “natural,” “intact,” and “wild” generally exhibit long histories of use, as do protected areas and Indigenous lands, and current global patterns of vertebrate species richness and key biodiversity areas are more strongly associated with past patterns of land use than with present ones in regional landscapes now characterized as natural. The current biodiversity crisis can seldom be explained by the loss of uninhabited wildlands, resulting instead from the appropriation, colonization, and intensifying use of the biodiverse cultural landscapes long shaped and sustained by prior societies. Recognizing this deep cultural connection with biodiversity will therefore be essential to resolve the crisis.

245 citations


Journal ArticleDOI
TL;DR: In this paper, the authors conclude that the spread and intensification of agriculture during the past half century is directly related to these losses, and that a stable (and almost certainly lower) human population, sustainable levels of consumption, and social justice that empowers the less wealthy people and nations of the world, where the vast majority of us live, will be necessary.
Abstract: Major declines in insect biomass and diversity, reviewed here, have become obvious and well documented since the end of World War II. Here, we conclude that the spread and intensification of agriculture during the past half century is directly related to these losses. In addition, many areas, including tropical mountains, are suffering serious losses because of climate change as well. Crops currently occupy about 11% of the world's land surface, with active grazing taking place over an additional 30%. The industrialization of agriculture during the second half of the 20th century involved farming on greatly expanded scales, monoculturing, the application of increasing amounts of pesticides and fertilizers, and the elimination of interspersed hedgerows and other wildlife habitat fragments, all practices that are destructive to insect and other biodiversity in and near the fields. Some of the insects that we are destroying, including pollinators and predators of crop pests, are directly beneficial to the crops. In the tropics generally, natural vegetation is being destroyed rapidly and often replaced with export crops such as oil palm and soybeans. To mitigate the effects of the Sixth Mass Extinction event that we have caused and are experiencing now, the following will be necessary: a stable (and almost certainly lower) human population, sustainable levels of consumption, and social justice that empowers the less wealthy people and nations of the world, where the vast majority of us live, will be necessary.

218 citations


Journal ArticleDOI
TL;DR: In this article, a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions, and (3) the impacts of micro-climate on forest biodiversity and ecosystem functioning in the face of climate change.
Abstract: Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.

183 citations


Journal ArticleDOI
19 Feb 2021-Science
TL;DR: In this paper, a new index, Cumulative Change in Biodiversity Facets, revealed marked changes in biodiversity in >50% of the world's rivers covering >40% of world's continental surface and >37% of global river length.
Abstract: Freshwater fish represent one-fourth of the world’s vertebrates and provide irreplaceable goods and services but are increasingly affected by human activities. A new index, Cumulative Change in Biodiversity Facets, revealed marked changes in biodiversity in >50% of the world’s rivers covering >40% of the world’s continental surface and >37% of the world’s river length, whereas

183 citations


Journal ArticleDOI
TL;DR: This work uses multitrophic ecological networks to investigate the importance of soil biodiversity, in particular, the biodiversity of key-stone taxa in controlling soil functioning and wheat production in a 35-year field fertilization experiment, and provides a list ofKey-stone phylotypes linking to crop production and soil nutrient cycling, which could give science-based guidance for sustainable food production.
Abstract: Cropping systems have fertilized soils for decades with undetermined consequences for the productivity and functioning of terrestrial ecosystems. One of the critical unknowns is the role of soil biodiversity in controlling crop production after decades of fertilization. This knowledge gap limits our capacity to assess how changes in soil biodiversity could alter crop production and soil health in changing environments. Here, we used multitrophic ecological networks to investigate the importance of soil biodiversity, in particular, the biodiversity of key-stone taxa in controlling soil functioning and wheat production in a 35-year field fertilization experiment. We found strong and positive associations between soil functional genes, crop production and the biodiversity of key-stone phylotypes; soils supporting a larger number of key-stone nematode, bacteria and fungi phylotypes yielded the highest wheat production. These key-stone phylotypes were also positively associated with plant growth (phototrophic bacteria, nitrogen fixers) and multiple functional genes related to nutrient cycling. The retrieved information on the genomes clustered with key-stone bacterial phylotypes indicated that the key-stone taxa had higher gene copies of oxidoreductases (participating most biogeochemical cycles of ecosystems and linking to microbial energetics) and 71 essential functional genes associated with carbon, nitrogen, phosphorus, and sulfur cycling. Altogether, our work highlights the fundamental role of the biodiversity of key-stone phylotypes in maintaining soil functioning and crop production after several decades of fertilization, and provides a list of key-stone phylotypes linking to crop production and soil nutrient cycling, which could give science-based guidance for sustainable food production.

156 citations


Posted ContentDOI
TL;DR: In this paper, the authors evaluate the feasibility and likely benefits of this approach in conservation and find that conserving genome-wide genetic variation is generally the best approach to prevent inbreeding depression and loss of adaptive potential from driving populations toward extinction.
Abstract: The unprecedented rate of extinction calls for efficient use of genetics to help conserve biodiversity. Several recent genomic and simulation-based studies have argued that the field of conservation biology has placed too much focus on conserving genome-wide genetic variation, and that the field should instead focus on managing the subset of functional genetic variation that is thought to affect fitness. Here, we critically evaluate the feasibility and likely benefits of this approach in conservation. We find that population genetics theory and empirical results show that conserving genome-wide genetic variation is generally the best approach to prevent inbreeding depression and loss of adaptive potential from driving populations toward extinction. Focusing conservation efforts on presumably functional genetic variation will only be feasible occasionally, often misleading, and counterproductive when prioritized over genome-wide genetic variation. Given the increasing rate of habitat loss and other environmental changes, failure to recognize the detrimental effects of lost genome-wide genetic variation on long-term population viability will only worsen the biodiversity crisis.

119 citations


Journal ArticleDOI
TL;DR: Biodiversity loss appears to increase the risk of human exposure to both new and established zoonotic pathogens, which presents an opportunity to articulate the next generation of research questions that can inform management and policy.
Abstract: Zoonotic diseases are infectious diseases of humans caused by pathogens that are shared between humans and other vertebrate animals Previously, pristine natural areas with high biodiversity were seen as likely sources of new zoonotic pathogens, suggesting that biodiversity could have negative impacts on human health At the same time, biodiversity has been recognized as potentially benefiting human health by reducing the transmission of some pathogens that have already established themselves in human populations These apparently opposing effects of biodiversity in human health may now be reconcilable Recent research demonstrates that some taxa are much more likely to be zoonotic hosts than others are, and that these animals often proliferate in human-dominated landscapes, increasing the likelihood of spillover In less-disturbed areas, however, these zoonotic reservoir hosts are less abundant and nonreservoirs predominate Thus, biodiversity loss appears to increase the risk of human exposure to both new and established zoonotic pathogens This new synthesis of the effects of biodiversity on zoonotic diseases presents an opportunity to articulate the next generation of research questions that can inform management and policy Future studies should focus on collecting and analyzing data on the diversity, abundance, and capacity to transmit of the taxa that actually share zoonotic pathogens with us To predict and prevent future epidemics, researchers should also focus on how these metrics change in response to human impacts on the environment, and how human behaviors can mitigate these effects Restoration of biodiversity is an important frontier in the management of zoonotic disease risk

110 citations


Journal ArticleDOI
TL;DR: A uniquely comprehensive checklist of bee species distributions and >5,800,000 public bee occurrence records are combined to describe global patterns of bee biodiversity, providing a new baseline and best practices for studies on bees and other understudied invertebrates.

Journal ArticleDOI
TL;DR: This work critically review and synthesize African climate, tectonics and terrestrial biodiversity evolution throughout the Cenozoic to the mid‐Pleistocene, drawing on recent advances in Earth and life sciences.
Abstract: Tropical Africa is home to an astonishing biodiversity occurring in a variety of ecosystems. Past climatic change and geological events have impacted the evolution and diversification of this biodiversity. During the last two decades, around 90 dated molecular phylogenies of different clades across animals and plants have been published leading to an increased understanding of the diversification and speciation processes generating tropical African biodiversity. In parallel, extended geological and palaeoclimatic records together with detailed numerical simulations have refined our understanding of past geological and climatic changes in Africa. To date, these important advances have not been reviewed within a common framework. Here, we critically review and synthesize African climate, tectonics and terrestrial biodiversity evolution throughout the Cenozoic to the mid-Pleistocene, drawing on recent advances in Earth and life sciences. We first review six major geo-climatic periods defining tropical African biodiversity diversification by synthesizing 89 dated molecular phylogeny studies. Two major geo-climatic factors impacting the diversification of the sub-Saharan biota are highlighted. First, Africa underwent numerous climatic fluctuations at ancient and more recent timescales, with tectonic, greenhouse gas, and orbital forcing stimulating diversification. Second, increased aridification since the Late Eocene led to important extinction events, but also provided unique diversification opportunities shaping the current tropical African biodiversity landscape. We then review diversification studies of tropical terrestrial animal and plant clades and discuss three major models of speciation: (i) geographic speciation via vicariance (allopatry); (ii) ecological spe-ciation impacted by climate and geological changes, and (iii) genomic speciation via genome duplication. Geographic speciation has been the most widely documented to date and is a common speciation model across tropical Africa. We conclude with four important challenges faced by tropical African biodiversity research: (i) to increase knowledge by gathering basic and fundamental biodiversity information; (ii) to improve modelling of African geophysical evolution throughout the Cenozoic via better constraints and downscaling approaches; (iii) to increase the precision of phylogenetic reconstruction and molecular dating of tropical African clades by using next generation sequencing approaches together with better fossil calibrations; (iv) finally, as done here, to integrate data better from Earth and life sciences by focusing on the interdisciplinary study of the evolution of tropical African biodiversity in a wider geodiversity context.

Posted ContentDOI
06 Jul 2021-bioRxiv
TL;DR: This paper found that conserving genome-wide genetic variation is generally the best approach to prevent inbreeding depression and loss of adaptive potential from driving populations towards extinction, and that focusing conservation efforts on presumably functional genetic variation will only be feasible occasionally, often misleading, and counterproductive when prioritized over genome wide genetic variation.
Abstract: The unprecedented rate of extinction calls for efficient use of genetics to help conserve biodiversity. Several recent genomic and simulation-based studies have argued that the field of conservation biology has placed too much focus on the conservation of genome-wide genetic variation, and that this approach should be replaced with another that focuses instead on managing the subset of functional genetic variation that is thought to affect fitness. Here, we critically evaluate the feasibility and likely benefits of this approach in conservation. We find that population genetics theory and empirical results show that the conserving genome-wide genetic variation is generally the best approach to prevent inbreeding depression and loss of adaptive potential from driving populations towards extinction. Focusing conservation efforts on presumably functional genetic variation will only be feasible occasionally, often misleading, and counterproductive when prioritized over genome-wide genetic variation. Given the increasing rate of habitat loss and other environmental changes, failure to recognize the detrimental effects of lost genome-wide variation on long-term population viability will only worsen the biodiversity crisis.

Journal ArticleDOI
TL;DR: In this article, the authors synthesize the biogeography of key organisms (vascular and non-vascular vegetation and soil microorganisms), attributes (functional traits, spatial patterns, plant-plant and plant-soil interactions) and processes (productivity and land cover) across global drylands.
Abstract: Despite their extent and socio-ecological importance, a comprehensive biogeographical synthesis of drylands is lacking. Here we synthesize the biogeography of key organisms (vascular and non-vascular vegetation and soil microorganisms), attributes (functional traits, spatial patterns, plant-plant and plant-soil interactions) and processes (productivity and land cover) across global drylands. These areas have a long evolutionary history, are centers of diversification for many plant lineages and include important plant diversity hotspots. This diversity captures a strikingly high portion of the variation in leaf functional diversity observed globally. Part of this functional diversity is associated with the large variation in response and effect traits in the shrubs encroaching dryland grasslands. Aridity and its interplay with the traits of interacting plant species largely shapes biogeographical patterns in plant-plant and plant-soil interactions, and in plant spatial patterns. Aridity also drives the composition of biocrust communities and vegetation productivity, which shows large geographical variation. We finish our review discussing major research gaps, which include: i) studying regular vegetation spatial patterns, ii) establishing large-scale plant and biocrust field surveys assessing individual-level trait measurements, iii) knowing whether plant-plant and plant-soil interactions impacts on biodiversity are predictable and iv) assessing how elevated CO2 modulates future aridity conditions and plant productivity.

Journal ArticleDOI
TL;DR: Research across disciplinary boundaries is needed to address the challenges that lakes face in the Anthropocene because they may play an increasingly important role in harbouring unique aquatic biota as well as providing ecosystem goods and services in the future.
Abstract: The Anthropocene presents formidable threats to freshwater ecosystems. Lakes are especially vulnerable and important at the same time. They cover only a small area worldwide but harbour high levels of biodiversity and contribute disproportionately to ecosystem services. Lakes differ with respect to their general type (e.g. land-locked, drainage, floodplain and large lakes) and position in the landscape (e.g. highland versus lowland lakes), which contribute to the dynamics of these systems. Lakes should be generally viewed as 'meta-systems', whereby biodiversity is strongly affected by species dispersal, and ecosystem dynamics are contributed by the flow of matter and substances among locations in a broader waterscape context. Lake connectivity in the waterscape and position in the landscape determine the degree to which a lake is prone to invasion by non-native species and accumulation of harmful substances. Highly connected lakes low in the landscape accumulate nutrients and pollutants originating from ecosystems higher in the landscape. The monitoring and restoration of lake biodiversity and ecosystem services should consider the fact that a high degree of dynamism is present at local, regional and global scales. However, local and regional monitoring may be plagued by the unpredictability of ecological phenomena, hindering adaptive management of lakes. Although monitoring data are increasingly becoming available to study responses of lakes to global change, we still lack suitable integration of models for entire waterscapes. Research across disciplinary boundaries is needed to address the challenges that lakes face in the Anthropocene because they may play an increasingly important role in harbouring unique aquatic biota as well as providing ecosystem goods and services in the future.

Journal ArticleDOI
TL;DR: In this article, the authors assess threats of future flow and water temperature extremes to ~11,500 riverine fish species and predict that increases in water temperature in particular will pose serious threats to freshwater fishes.
Abstract: Climate change poses a significant threat to global biodiversity, but freshwater fishes have been largely ignored in climate change assessments. Here, we assess threats of future flow and water temperature extremes to ~11,500 riverine fish species. In a 3.2 °C warmer world (no further emission cuts after current governments’ pledges for 2030), 36% of the species have over half of their present-day geographic range exposed to climatic extremes beyond current levels. Threats are largest in tropical and sub-arid regions and increases in maximum water temperature are more threatening than changes in flow extremes. In comparison, 9% of the species are projected to have more than half of their present-day geographic range threatened in a 2 °C warmer world, which further reduces to 4% of the species if warming is limited to 1.5 °C. Our results highlight the need to intensify (inter)national commitments to limit global warming if freshwater biodiversity is to be safeguarded. Climate change is a threat to global biodiversity, but the potential effects on freshwater fishes have not been well studied. Here the authors model future flow and water temperature extremes and predict that increases in water temperature in particular will pose serious threats to freshwater fishes

Journal ArticleDOI
TL;DR: In this paper, the authors quantify and map the spatiotemporal changes in global deforestation footprints over 15 years (2001-2015) at a 30-m resolution and find that while many developed countries, China and India have obtained net forest gains domestically, they have also increased the deforestation embodied in their imports, of which tropical forests are the most threatened biome.
Abstract: Deforestation, a significant threat to biodiversity, is accelerated by global demand for commodities. Although prior literature has linked deforestation to global supply chains, here we provide a fine-scale representation of spatial patterns of deforestation associated with international trade. Using remote sensing data and a multi-region input-output model, we quantify and map the spatiotemporal changes in global deforestation footprints over 15 years (2001-2015) at a 30-m resolution. We find that, while many developed countries, China and India have obtained net forest gains domestically, they have also increased the deforestation embodied in their imports, of which tropical forests are the most threatened biome. Consumption patterns of G7 countries drive an average loss of 3.9 trees per person per year. Some of the hotspots of deforestation embodied in international trade are also biodiversity hotspots, such as in Southeast Asia, Madagascar, Liberia, Central America and the Amazonian rainforest. Our results emphasize the need to reform zero-deforestation policies through strong transnational efforts and by improving supply chain transparency, public-private engagement and financial support for the tropics.

Journal ArticleDOI
TL;DR: In this paper, the authors present the results of 95 meta-analyses integrating 5156 experiments conducted over 84 experimental years and representing more than 54,500 paired observations on 120 crop species in 85 countries.
Abstract: Ecological theory suggests that biodiversity has a positive and stabilizing effect on the delivery of ecosystem services. Yet, the impacts of increasing the diversity of cultivated crop species or varieties in agroecosystems are still under scrutiny. The available empirical evidence is scattered in scope, agronomic and geographic contexts, and impacts on ecosystem services may depend on the type of diversification strategy used. To robustly assess the effects of crop diversification in agroecosystems, we compiled the results of 95 meta-analyses integrating 5156 experiments conducted over 84 experimental years and representing more than 54,500 paired observations on 120 crop species in 85 countries. Overall, our synthesis of experimental data from across the globe shows that crop diversification enhances not only crop production (median effect +14%) but also the associated biodiversity (+24%, i.e., the biodiversity of non-cultivated plants and animals), and several supporting and regulating ecosystem services including water quality (+51%), pest and disease control (+63%) and soil quality (+11%). However, there was substantial variability in the results for each individual ecosystem service between different diversification strategies such as agroforestry, intercropping, cover crops, crop rotation or variety mixtures. Agroforestry is particularly effective in delivering multiple ecosystem services, that is, water regulation and quality, pest and diseases regulation, associated biodiversity, long-term soil productivity and quality. Variety mixtures, instead, provide the lowest benefits, whereas the other strategies show intermediate results. Our results highlight that while increasing the diversity of cultivated crop species or varieties in agroecosystems represents a very promising strategy for more sustainable land management, contributing to enhanced yields, enhanced biodiversity and ecosystem services, some crop diversification strategies are more effective than others in supporting key ecosystem services.

Journal ArticleDOI
TL;DR: In this paper, the relationship between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent, and a strong positive association between plant species richness and soil multifunctional in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with ecosystem function in more arid areas.
Abstract: Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed >8000 risk projections of the projected impact of climate change on 273 areas of exceptional biodiversity, including terrestrial and marine environments and found that climate change is projected to negatively impact all assessed areas, but endemic species are consistently more adversely impacted.

Journal ArticleDOI
TL;DR: In this paper, the authors present results from a joint optimization that minimizes the number of threatened species, maximizes carbon retention and water quality regulation, and ranks terrestrial conservation priorities globally.
Abstract: To meet the ambitious objectives of biodiversity and climate conventions, the international community requires clarity on how these objectives can be operationalized spatially and how multiple targets can be pursued concurrently. To support goal setting and the implementation of international strategies and action plans, spatial guidance is needed to identify which land areas have the potential to generate the greatest synergies between conserving biodiversity and nature's contributions to people. Here we present results from a joint optimization that minimizes the number of threatened species, maximizes carbon retention and water quality regulation, and ranks terrestrial conservation priorities globally. We found that selecting the top-ranked 30% and 50% of terrestrial land area would conserve respectively 60.7% and 85.3% of the estimated total carbon stock and 66% and 89.8% of all clean water, in addition to meeting conservation targets for 57.9% and 79% of all species considered. Our data and prioritization further suggest that adequately conserving all species considered (vertebrates and plants) would require giving conservation attention to ~70% of the terrestrial land surface. If priority was given to biodiversity only, managing 30% of optimally located land area for conservation may be sufficient to meet conservation targets for 81.3% of the terrestrial plant and vertebrate species considered. Our results provide a global assessment of where land could be optimally managed for conservation. We discuss how such a spatial prioritization framework can support the implementation of the biodiversity and climate conventions.

Journal ArticleDOI
TL;DR: In this paper, a detailed assessment of global macrolepidopteran population trends including numerous cases of both region-wide and local losses and studies that report no declines is presented.
Abstract: Moths are the most taxonomically and ecologically diverse insect taxon for which there exist considerable time-series abundance data. There is an alarming record of decreases in moth abundance and diversity from across Europe, with rates varying markedly among and within regions. Recent reports from Costa Rica reveal steep cross-lineage declines of caterpillars, while other sites (Ecuador and Arizona, reported here) show no or only modest long-term decreases over the past two decades. Rates of decline for dietary and ecological specialists are steeper than those for ecologically generalized taxa. Additional traits commonly associated with elevated risks include large wingspans, small geographic ranges, low dispersal ability, and univoltinism; taxa associated with grasslands, aridlands, and nutrient-poor habitats also appear to be at higher risk. In temperate areas, many moth taxa limited historically by abiotic factors are increasing in abundance and range. We regard the most important continental-scale stressors to include reductions in habitat quality and quantity resulting from land-use change and climate change and, to a lesser extent, atmospheric nitrification and introduced species. Site-specific stressors include pesticide use and light pollution. Our assessment of global macrolepidopteran population trends includes numerous cases of both region-wide and local losses and studies that report no declines. Spatial variation of reported losses suggests that multiple stressors are in play. With the exception of recent reports from Costa Rica, the most severe examples of moth declines are from Northern Hemisphere regions of high human-population density and intensive agriculture.

Journal ArticleDOI
TL;DR: This quantitative review indicates that insect herbivory was, on average, lower in mixed forest stands than in pure stands, but these diversity effects were contingent on herbivore diet breadth and tree species composition.
Abstract: Ecological research conducted over the past five decades has shown that increasing tree species richness at forest stands can improve tree resistance to insect pest damage. However, the commonality...

Journal ArticleDOI
TL;DR: In this paper, the authors synthesize these topics with decades of first-hand experience and recent literature into 14 special recommendations for global freshwater biodiversity conservation based on the successes and setbacks of European policy, management, and research.
Abstract: Plans are currently being drafted for the next decade of action on biodiversity-both the post-2020 Global Biodiversity Framework of the Convention on Biological Diversity (CBD) and Biodiversity Strategy of the European Union (EU). Freshwater biodiversity is disproportionately threatened and underprioritized relative to the marine and terrestrial biota, despite supporting a richness of species and ecosystems with their own intrinsic value and providing multiple essential ecosystem services. Future policies and strategies must have a greater focus on the unique ecology of freshwater life and its multiple threats, and now is a critical time to reflect on how this may be achieved. We identify priority topics including environmental flows, water quality, invasive species, integrated water resources management, strategic conservation planning, and emerging technologies for freshwater ecosystem monitoring. We synthesize these topics with decades of first-hand experience and recent literature into 14 special recommendations for global freshwater biodiversity conservation based on the successes and setbacks of European policy, management, and research. Applying and following these recommendations will inform and enhance the ability of global and European post-2020 biodiversity agreements to halt and reverse the rapid global decline of freshwater biodiversity.

Journal ArticleDOI
TL;DR: An eight-point strategy to close existing data gaps by reviving explorative field research on the distribution, abundance and ecology of species and linking taxonomic research more closely with conservation is proposed.
Abstract: Measuring progress toward international biodiversity targets requires robust information on the conservation status of species, which the International Union for Conservation of Nature (IUCN) Red List of Threatened Species provides. However, data and capacity are lacking for most hyperdiverse groups, such as invertebrates, plants, and fungi, particularly in megadiverse or high-endemism regions. Conservation policies and biodiversity strategies aimed at halting biodiversity loss by 2020 need to be adapted to tackle these information shortfalls after 2020. We devised an 8-point strategy to close existing data gaps by reviving explorative field research on the distribution, abundance, and ecology of species; linking taxonomic research more closely with conservation; improving global biodiversity databases by making the submission of spatially explicit data mandatory for scientific publications; developing a global spatial database on threats to biodiversity to facilitate IUCN Red List assessments; automating preassessments by integrating distribution data and spatial threat data; building capacity in taxonomy, ecology, and biodiversity monitoring in countries with high species richness or endemism; creating species monitoring programs for lesser-known taxa; and developing sufficient funding mechanisms to reduce reliance on voluntary efforts. Implementing these strategies in the post-2020 biodiversity framework will help to overcome the lack of capacity and data regarding the conservation status of biodiversity. This will require a collaborative effort among scientists, policy makers, and conservation practitioners.

Journal ArticleDOI
TL;DR: In this paper, the authors show that the trade-off between drought avoidance and hydraulic safety is a major axis of physiological variation across tropical ecosystems and propose a novel and independent axis of hydraulic trait variation linking vulnerability to hydraulic failure (expressed as the hydraulic safety margin (HSM)) and growth.
Abstract: Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth. Consequently, these ecosystems are extremely important components of Earth's climatic system and biogeochemical cycles. Plant hydraulics is an essential discipline to understand and predict the dynamics of tropical vegetation in scenarios of changing water availability. Using published plant hydraulic data we show that the trade-off between drought avoidance (expressed as deep-rooting, deciduousness and capacitance) and hydraulic safety (P50 - the water potential when plants lose 50% of their maximum hydraulic conductivity) is a major axis of physiological variation across tropical ecosystems. We also propose a novel and independent axis of hydraulic trait variation linking vulnerability to hydraulic failure (expressed as the hydraulic safety margin (HSM)) and growth, where inherent fast-growing plants have lower HSM compared to slow-growing plants. We surmise that soil nutrients are fundamental drivers of tropical community assembly determining the distribution and abundance of the slow-safe/fast-risky strategies. We conclude showing that including either the growth-HSM or the resistance-avoidance trade-off in models can make simulated tropical rainforest communities substantially more vulnerable to drought than similar communities without the trade-off. These results suggest that vegetation models need to represent hydraulic trade-off axes to accurately project the functioning and distribution of tropical ecosystems.

Journal ArticleDOI
TL;DR: Developments in knowledge, technology, databases, practice, and capacity are reviewed to explore how they can support improved consideration of genetic diversity in global conservation policy commitments and enable countries to monitor, report on, and take action to maintain or restore genetic diversity.
Abstract: Global conservation policy and action have largely neglected protecting and monitoring genetic diversity-one of the three main pillars of biodiversity Genetic diversity (diversity within species) underlies species' adaptation and survival, ecosystem resilience, and societal innovation The low priority given to genetic diversity has largely been due to knowledge gaps in key areas, including the importance of genetic diversity and the trends in genetic diversity change; the perceived high expense and low availability and the scattered nature of genetic data; and complicated concepts and information that are inaccessible to policymakers However, numerous recent advances in knowledge, technology, databases, practice, and capacity have now set the stage for better integration of genetic diversity in policy instruments and conservation efforts We review these developments and explore how they can support improved consideration of genetic diversity in global conservation policy commitments and enable countries to monitor, report on, and take action to maintain or restore genetic diversity

Journal ArticleDOI
05 Feb 2021-Science
TL;DR: In this article, the authors compared changes in species occupancy and site-level richness of small mammal and bird communities in protected areas of the Mojave Desert using surveys spanning a century.
Abstract: High exposure to warming from climate change is expected to threaten biodiversity by pushing many species toward extinction. Such exposure is often assessed for all taxa at a location from climate projections, yet species have diverse strategies for buffering against temperature extremes. We compared changes in species occupancy and site-level richness of small mammal and bird communities in protected areas of the Mojave Desert using surveys spanning a century. Small mammal communities remained remarkably stable, whereas birds declined markedly in response to warming and drying. Simulations of heat flux identified different exposure to warming for birds and mammals, which we attribute to microhabitat use. Estimates from climate projections are unlikely to accurately reflect species’ exposure without accounting for the effects of microhabitat buffering on heat flux.

Journal ArticleDOI
01 Apr 2021
TL;DR: In this article, the authors developed a geographically explicit model of future agricultural land clearance based on observed historical changes, and combined the outputs with species-specific habitat preferences for 19,859 species of terrestrial vertebrates.
Abstract: The projected loss of millions of square kilometres of natural ecosystems to meet future demand for food, animal feed, fibre and bioenergy crops is likely to massively escalate threats to biodiversity. Reducing these threats requires a detailed knowledge of how and where they are likely to be most severe. We developed a geographically explicit model of future agricultural land clearance based on observed historical changes, and combined the outputs with species-specific habitat preferences for 19,859 species of terrestrial vertebrates. We project that 87.7% of these species will lose habitat to agricultural expansion by 2050, with 1,280 species projected to lose ≥25% of their habitat. Proactive policies targeting how, where, and what food is produced could reduce these threats, with a combination of approaches potentially preventing almost all these losses while contributing to healthier human diets. As international biodiversity targets are set to be updated in 2021, these results highlight the importance of proactive efforts to safeguard biodiversity by reducing demand for agricultural land.

Journal ArticleDOI
TL;DR: It is shown that at a 97% sequence similarity threshold, the total richness of non-singleton fungal taxa across the studies published so far is 1.08 million, representing a conservative estimate of global fungal species richness.
Abstract: High-throughput DNA sequencing has dramatically transformed several areas of biodiversity research including mycology. Despite limitations, high-throughput sequencing is nowadays a predominant method to characterize the alpha and beta diversity of fungal communities. Across the papers utilizing high-throughput sequencing approaches to study natural habitats in terrestrial ecosystems worldwide, > 200 studies published until 2019 have generated over 250 million sequences of the primary mycological metabarcoding marker, the nuclear ribosomal internal transcribed spacer 2 (ITS2). Here we show that at a 97% sequence similarity threshold, the total richness of non-singleton fungal taxa across the studies published so far is 1.08 million, mostly Ascomycota (56.8% of the taxa) and Basidiomycota (36.7% of the taxa). The Chao-1 estimate of the total extant fungal diversity based on this dataset is 6.28 million taxa, representing a conservative estimate of global fungal species richness. Soil and litter represent the habitats with the highest alpha diversity of fungi followed by air, plant shoots, plant roots and deadwood with Chao-1 predictions, for samples containing 5000 sequences, of 1219, 569, 392, 228, 215 and 140 molecular species, respectively. Based on the high-throughput sequencing data, the highest proportion of unknown fungal species is associated with samples of lichen and plant tissues. When considering the use of high-throughput sequencing for the estimation of global fungal diversity, the limitations of the method have to be taken into account, some of which are sequencing platform-specific while others are inherent to the metabarcoding approaches of species representation. In this respect, high-throughput sequencing data can complement fungal diversity predictions based on methods of traditional mycology and increase our understanding of fungal biodiversity.