scispace - formally typeset
Search or ask a question
Topic

Biofilm

About: Biofilm is a research topic. Over the lifetime, 23010 publications have been published within this topic receiving 906812 citations. The topic is also known as: biofilms.


Papers
More filters
Journal ArticleDOI
TL;DR: A brief review of the literature regarding the epidemiology of Candida species, as well as their pathogenicity and ability to form biofilms, the antifungal activity of natural products and other therapeutic options is presented.
Abstract: The incidence of fungal infections has increased significantly, so contributing to morbidity and mortality. This is caused by an increase in antimicrobial resistance and the restricted number of antifungal drugs, which retain many side effects. Candida species are major human fungal pathogens that cause both mucosal and deep tissue infections. Recent evidence suggests that the majority of infections produced by this pathogen are associated with biofilm growth. Biofilms are biological communities with a high degree of organization, in which micro-organisms form structured, coordinated and functional communities. These biological communities are embedded in a self-created extracellular matrix. Biofilm production is also associated with a high level of antimicrobial resistance of the associated organisms. The ability of Candida species to form drug-resistant biofilms is an important factor in their contribution to human disease. The study of plants as an alternative to other forms of drug discovery has attracted great attention because, according to the World Health Organization, these would be the best sources for obtaining a wide variety of drugs and could benefit a large population. Furthermore, silver nanoparticles, antibodies and photodynamic inactivation have also been used with good results. This article presents a brief review of the literature regarding the epidemiology of Candida species, as well as their pathogenicity and ability to form biofilms, the antifungal activity of natural products and other therapeutic options.

964 citations

Journal ArticleDOI
TL;DR: This review summarises both historical and recent scientific data in support of the known biofilm resistance and tolerance mechanisms and suggestions for future work in the field are provided.
Abstract: Biofilms are surface-attached groups of microbial cells encased in an extracellular matrix that are significantly less susceptible to antimicrobial agents than non-adherent, planktonic cells. Biofilm-based infections are, as a result, extremely difficult to cure. A wide range of molecular mechanisms contribute to the high degree of recalcitrance that is characteristic of biofilm communities. These mechanisms include, among others, interaction of antimicrobials with biofilm matrix components, reduced growth rates and the various actions of specific genetic determinants of antibiotic resistance and tolerance. Alone, each of these mechanisms only partially accounts for the increased antimicrobial recalcitrance observed in biofilms. Acting in concert, however, these defences help to ensure the survival of biofilm cells in the face of even the most aggressive antimicrobial treatment regimens. This review summarises both historical and recent scientific data in support of the known biofilm resistance and tolerance mechanisms. Additionally, suggestions for future work in the field are provided.

956 citations

Journal ArticleDOI
TL;DR: A summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation and a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.
Abstract: Extracellular polymeric substances (EPS) produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

937 citations

Journal ArticleDOI
TL;DR: A portion of this large body of work including the environmental signals and signaling pathways that regulate biofilm formation, the components of the biofilm matrix, and the mechanisms and regulation of biofilm dispersal are reviewed.
Abstract: Biofilms are communities of microorganisms that live attached to surfaces. Biofilm formation has received much attention in the last decade, as it has become clear that virtually all types of bacteria can form biofilms and that this may be the preferred mode of bacterial existence in nature. Our current understanding of biofilm formation is based on numerous studies of myriad bacterial species. Here, we review a portion of this large body of work including the environmental signals and signaling pathways that regulate biofilm formation, the components of the biofilm matrix, and the mechanisms and regulation of biofilm dispersal.

935 citations

Journal ArticleDOI
TL;DR: The standardize a polyvinyl chloride microtiter plate assay can be used as a rapid, simple method to screen for differences in biofilm production between strains or growth conditions prior to performing labor-intensive microscopic analyses.
Abstract: Listeria monocytogenes has the ability to form biofilms on food-processing surfaces, potentially leading to food product contamination. The objective of this research was to standardize a polyvinyl chloride (PVC) microtiter plate assay to compare the ability of L. monocytogenes strains to form biofilms. A total of 31 coded L. monocytogenes strains were grown in defined medium (modified Welshimer's broth) at 32°C for 20 and 40 h in PVC microtiter plate wells. Biofilm formation was indirectly assessed by staining with 1% crystal violet and measuring crystal violet absorbance, using destaining solution. Cellular growth rates and final cell densities did not correlate with biofilm formation, indicating that differences in biofilm formation under the same environmental conditions were not due to growth rate differences. The mean biofilm production of lineage I strains was significantly greater than that observed for lineage II and lineage III strains. The results from the standardized microtiter plate biofilm assay were also compared to biofilm formation on PVC and stainless steel as assayed by quantitative epifluorescence microscopy. Results showed similar trends for the microscopic and microtiter plate assays, indicating that the PVC microtiter plate assay can be used as a rapid, simple method to screen for differences in biofilm production between strains or growth conditions prior to performing labor-intensive microscopic analyses.

924 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
86% related
Antimicrobial
45.4K papers, 1M citations
84% related
Virulence
35.9K papers, 1.3M citations
83% related
Hydrogen peroxide
42.5K papers, 1M citations
82% related
Plasmid
44.3K papers, 1.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,430
20226,827
20212,025
20202,079
20191,885