scispace - formally typeset
Search or ask a question
Topic

Biofilm

About: Biofilm is a research topic. Over the lifetime, 23010 publications have been published within this topic receiving 906812 citations. The topic is also known as: biofilms.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that the RcsC sensor kinase may play an important role in the remodelling of the bacterial surface during growth on a solid surface and biofilm formation.
Abstract: Summary Bacteria are often found associated with surfaces as sessile bacterial communities called biofilms, and the formation of a biofilm can be split up into different stages each requiring the expression of specific genes. The production of extracellular polysaccharides (EPS) is important for the maturation of biofilms and is controlled by the Rcs two-component pathway in Escherichia coli (and other Gram-negative bacteria). In this study, we show, for the first time, that the RcsC sensor kinase is required for normal biofilm development in E. coli. Moreover, using a combination of DNA macroarray technology and transcriptional fusion analysis, we show that the expression of > 150 genes is controlled by RcsC in E. coli. In silico analyses of the RcsC regulon predicts that 50% of the genes encode proteins that are either localized to the envelope of E. coli or have activities that affect the structure/properties of the bacterial surface, e.g. the production of colanic acid. Moreover, we also show that RcsC is activated during growth on a solid surface. Therefore, we suggest that the RcsC sensor kinase may play an important role in the remodelling of the bacterial surface during growth on a solid surface and biofilm formation.

237 citations

Journal ArticleDOI
TL;DR: It is shown that deletion of yceP and yliH increases biofilm formation in continuous-flow chambers with minimal glucose medium by increasing biofilm mass, surface coverage, and mean thickness, and the genetic basis of the increase was related to differential expression of genes related to stress response for both mutants.
Abstract: We previously discovered that yliH and yceP are induced in Escherichia coli biofilms (D. Ren, L. A. Bedzyk, S. M. Thomas, R. W. Ye, and T. K. Wood, Appl. Microbiol. Biotechnol. 64:515-524, 2004). Here, it is shown that deletion of yceP (b1060) and yliH (b0836) increases biofilm formation in continuous-flow chambers with minimal glucose medium by increasing biofilm mass (240- to 290-fold), surface coverage (16- to 31-fold), and mean thickness (2,800-fold). To determine the genetic basis of the increase in biofilm formation, we examined the differential gene expression profile in biofilms for both the mutants relative to the wild-type strain in rich medium with glucose and found that 372 to 882 genes were induced and that 76 to 337 were repressed consistently >2-fold (P ≤ 0.05). The increase in biofilm formation was related to differential expression of genes related to stress response (8 to 64 genes) for both mutants, including rpoS and sdiA. More importantly, 42 to 130 genes related to autoinducer 2 cell signaling were also differentially expressed, including gadAB and flgBCEGHIJLMN, as well as signaling through indole, since 17 to 26 indole-related genes were differentially expressed, including phoAER, gltBD, mtr (encodes protein for indole import), and acrEF (encodes proteins for indole export). Increased biofilm formation in the yliH and yceP mutants in LB supplemented with 0.2% glucose (LB glu) occurred through a reduction in extracellular and intracellular indole concentrations in both mutants (50- to 140-fold), and the addition of indole to the culture restored the wild-type biofilm phenotype; hence, indole represses biofilms. Additionally, both mutants regulate biofilms through quorum sensing, since deletion of either yliH or yceP increased extracellular autoinducer 2 concentrations 50-fold when grown in complex medium (most notably in the stationary phase). Both proteins are involved in motility regulation, since YliH (127 amino acids) and YceP (84 amino acids) repressed motility two to sevenfold (P ≤ 0.05) in LB, and YceP repressed motility sevenfold (P ≤ 0.05) in LB glu. Heightened motility in the yceP mutant occurred, due to increased transcription of the flagella and motility loci, including fliC, motA, and qseB (3- to 86-fold). We propose new names for these two loci: bssR for yliH and bssS for yceP, based on the phrase “regulator of biofilm through signal secretion.”

237 citations

Journal ArticleDOI
TL;DR: Treatment with the peptide represents a novel strategy to potentiate antibiotic activity against biofilms formed by multidrug-resistant pathogens.
Abstract: Biofilm-related infections account for at least 65% of all human infections, but there are no available antimicrobials that specifically target biofilms. Their elimination by available treatments is inefficient since biofilm cells are between 10- and 1,000-fold more resistant to conventional antibiotics than planktonic cells. Here we describe the synergistic interactions, with different classes of antibiotics, of a recently characterized antibiofilm peptide, 1018, to potently prevent and eradicate bacterial biofilms formed by multidrug-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Combinations of peptide 1018 and the antibiotic ceftazidime, ciprofloxacin, imipenem, or tobramycin were synergistic in 50% of assessments and decreased by 2- to 64-fold the concentration of antibiotic required to treat biofilms formed by Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Salmonella enterica, and methicillin-resistant Staphylococcus aureus. Furthermore, in flow cell biofilm studies, combinations of low, subinhibitory levels of the peptide (0.8 μg/ml) and ciprofloxacin (40 ng/ml) decreased dispersal and triggered cell death in mature P. aeruginosa biofilms. In addition, short-term treatments with the peptide in combination with ciprofloxacin prevented biofilm formation and reduced P. aeruginosa PA14 preexisting biofilms. PCR studies indicated that the peptide suppressed the expression of various antibiotic targets in biofilm cells. Thus, treatment with the peptide represents a novel strategy to potentiate antibiotic activity against biofilms formed by multidrug-resistant pathogens.

237 citations

Journal ArticleDOI
TL;DR: Several approaches have been assessed which aim at alleviating virulence, or biofilm formation, by reducing the signal concentration in the bacterial environment, and these involve the application or stimulation of signal-degrading bacteria as biocontrol agents in the protection of crop plants against soft-rot disease.

237 citations

Journal ArticleDOI
TL;DR: Bacteria in mature biofilms and nutrient-limitedBiofilms are more resistant to CHX killing than in young biofilmms, emphasizing the importance of standardization of factors such as biofilm age when studying the comparative effectiveness of disinfecting agents against biofilm bacteria.

236 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
86% related
Antimicrobial
45.4K papers, 1M citations
84% related
Virulence
35.9K papers, 1.3M citations
83% related
Hydrogen peroxide
42.5K papers, 1M citations
82% related
Plasmid
44.3K papers, 1.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,430
20226,827
20212,025
20202,079
20191,885