scispace - formally typeset
Search or ask a question
Topic

Biofilm

About: Biofilm is a research topic. Over the lifetime, 23010 publications have been published within this topic receiving 906812 citations. The topic is also known as: biofilms.


Papers
More filters
Journal ArticleDOI
TL;DR: The most important insights in the mechanisms underlying biofilm-associated antifungal drug resistance and immune evasion strategies are summarized, focusing on the most recent advances in this area of research.
Abstract: Like other microorganisms, free-living Candida albicans is mainly present in a three-dimensional multicellular structure, which is called a biofilm, rather than in a planktonic form. Candida albicans biofilms can be isolated from both abiotic and biotic surfaces at various locations within the host. As the number of abiotic implants, mainly bloodstream and urinary catheters, has been increasing, the number of biofilm-associated bloodstream or urogenital tract infections is also strongly increasing resulting in a raise in mortality. Cells within a biofilm structure show a reduced susceptibility to specific commonly used antifungals and, in addition, it has recently been shown that such cells are less sensitive to killing by components of our immune system. In this review, we summarize the most important insights in the mechanisms underlying biofilm-associated antifungal drug resistance and immune evasion strategies, focusing on the most recent advances in this area of research.

235 citations

Journal ArticleDOI
TL;DR: The results showed that bacteria might be involved in developing microbial communities under salt stress and helpful in colonizing of bacterial strains to plant roots and soil particles and suggest the feasibility of using above strains in improving plant growth and soil fertility under salinity.

235 citations

Journal ArticleDOI
TL;DR: It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.
Abstract: Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce) enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.

235 citations

Journal ArticleDOI
TL;DR: FISH and 16S rRNA gene sequence analyses revealed that a specific phylogenetic group of bacteria, the Betaproteobacteria, probably played a major role in development of the mature biofilms, which led to the severe irreversible membrane biofouling.
Abstract: For more efficient control and prediction of membrane biofouling in membrane bioreactors (MBRs), a fundamental understanding of mechanisms of membrane biofouling is essential. In this study, we operated full-scale submerged MBRs using real municipal wastewater delivered from the primary sedimentation basin of a municipal wastewater treatment facility over 3 months, and the adhesion and formation of biofilms on 0.4-microm pore size polyethylene hollow-fiber microfiltration (MF) membrane surfaces, separated from simple deposition of sludge cake, were monitored using scanning electron microscopy (SEM). In addition, the compositions of planktonic and biofilm microbial communities in the MBR were analyzed using culture independent molecular-based methods (i.e., fluorescent in situ hybridization (FISH) and 16S rRNA gene sequence analysis). The SEM and LIVE/DEAD staining analyses clearly showed that the biofilms gradually developed on the membrane surfaces with time, which had a strong positive correlation with the increase in trans-membrane pressure (TMP). This indicated that the biofilm formation induced the membrane fouling. The FISH results revealed that the microbial communities on membrane surfaces were quite different from those in the planktonic biomass in the mixed liquor. Moreover, FISH and 16S rRNA gene sequence analyses revealed that a specific phylogenetic group of bacteria, the Betaproteobacteria, probably played a major role in development of the mature biofilms, which led to the severe irreversible membrane biofouling.

235 citations

Journal ArticleDOI
TL;DR: A model for c-di-GMP as a key intracellular regulator for controlling biofilm stability by shifting the state of a biofilm cell between attachment and detachment in a concentration-dependent manner is proposed.
Abstract: Stability and resilience against environmental perturbations are critical properties of medical and environmental biofilms and pose important targets for their control. Biofilm stability is determined by two mutually exclusive processes: attachment of cells to and detachment from the biofilm matrix. Using Shewanella oneidensis MR-1, an environmentally versatile, Fe(III) and Mn(IV) mineral-reducing microorganism, we identified mxdABCD as a new set of genes essential for formation of a three-dimensional biofilm. Molecular analysis revealed that mxdA encodes a cyclic bis(3',5')guanylic acid (cyclic di-GMP)-forming enzyme with an unusual GGDEF motif, i.e., NVDEF, which is essential for its function. mxdB encodes a putative membrane-associated glycosyl transferase. Both genes are essential for matrix attachment. The attachment-deficient phenotype of a DeltamxdA mutant was rescued by ectopic expression of VCA0956, encoding another diguanylate cyclase. Interestingly, a rapid cellular detachment from the biofilm occurred upon induction of yhjH, a gene encoding an enzyme that has been shown to have phosphodiesterase activity. In this way, it was possible to bypass the previously identified sudden depletion of molecular oxygen as an environmental trigger to induce biofilm dissolution. We propose a model for c-di-GMP as a key intracellular regulator for controlling biofilm stability by shifting the state of a biofilm cell between attachment and detachment in a concentration-dependent manner.

234 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
86% related
Antimicrobial
45.4K papers, 1M citations
84% related
Virulence
35.9K papers, 1.3M citations
83% related
Hydrogen peroxide
42.5K papers, 1M citations
82% related
Plasmid
44.3K papers, 1.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,430
20226,827
20212,025
20202,079
20191,885