scispace - formally typeset
Search or ask a question
Topic

Biofilm

About: Biofilm is a research topic. Over the lifetime, 23010 publications have been published within this topic receiving 906812 citations. The topic is also known as: biofilms.


Papers
More filters
Journal ArticleDOI
TL;DR: If the EPS amount is relatively small,cell adhesion onto solid surfaces is inhibited by electrostatic interaction, and if it is relatively large, cell adhesion is enhanced by polymeric interaction.
Abstract: The influence of extracellular polymeric substances (EPS) on bacterial cell adhesion onto solid surfaces was investigated using 27 heterotrophic bacterial strains isolated from a wastewater treatment reactor. Cell adhesion onto glass beads was carried out by the packed-bed method and the results were discussed in terms of the amount of each EPS component produced and cell surface characteristics such as zeta potential and hydrophobicity. Protein and polysaccharides accounted for 75-89% of the EPS composition, indicating that they are the major EPS components. Among the polysaccharides, the amounts of hexose, hexosamine and ketose were relatively high in EPS-rich strains. For EPS-poor strains, the efficiency of cell adhesion onto glass beads increased as the absolute values of zeta potential decreased, suggesting that electrostatic interaction suppresses cell adhesion efficiency. On the other hand, the amounts of hexose and pentose exhibited good correlations with cell adhesiveness for EPS-rich strains, indicating that polymeric interaction due to the EPS covering on the cell surface promoted cell adhesion. It was concluded that, if the EPS amount is relatively small, cell adhesion onto solid surfaces is inhibited by electrostatic interaction, and if it is relatively large, cell adhesion is enhanced by polymeric interaction.

521 citations

Journal ArticleDOI
TL;DR: Microarray analysis of biofilm-associated bacteria shows that expression of the Vibrio polysaccharide synthesis (vps) operons is enhanced in hapR mutants, suggesting that quorum sensing may promote cellular exit from the biofilm once the organisms have traversed the gastric acid barrier of the stomach.

519 citations

Journal ArticleDOI
TL;DR: The importance of matrix-producing organisms in fostering a pathogenic habitat where interspecies competition and synergies occur to drive the disease process is highlighted, which could have implications to other infections associated with polymicrobial biofilms.

518 citations

Journal ArticleDOI
TL;DR: A detailed individual-based simulation of a biofilm is used to investigate the outcome of evolutionary competitions between strains that differ in their level of polymer production, suggesting that polymer secretion provides a strong competitive advantage to cell lineages within mixed-genotype biofilms: global cooperation is not required.
Abstract: Biofilms, in which cells attach to surfaces and secrete slime (polymeric substances), are central to microbial life. Biofilms are often thought to require high levels of cooperation because extracellular polymeric substances are a shared resource produced by one cell that can be used by others. Here we examine this hypothesis by using a detailed individual-based simulation of a biofilm to investigate the outcome of evolutionary competitions between strains that differ in their level of polymer production. Our model includes a biochemical description of the carbon fluxes for growth and polymer production, and it explicitly calculates diffusion-reaction effects and the resulting solute gradients in the biofilm. An emergent property of these simple but realistic mechanistic assumptions is a strong evolutionary advantage to extracellular polymer production. Polymer secretion is altruistic to cells above a focal cell: it pushes later generations in their lineage up and out into better oxygen conditions, but it harms others; polymer production suffocates neighboring nonpolymer producers. This property, analogous to vertical growth in plants, suggests that polymer secretion provides a strong competitive advantage to cell lineages within mixed-genotype biofilms: global cooperation is not required. Our model fundamentally changes how biofilms are expected to respond to changing social conditions; the presence of multiple strains in a biofilm should promote rather than inhibit polymer secretion.

514 citations

Journal ArticleDOI
TL;DR: The dominant mechanisms are thought to be related to modified nutrient environments and suppression of growth rate within the biofilm; direct interactions between the exopolymer matrices, and their constituents, and antimicrobials, affecting diffusion and availability; and the development of biofilm/attachmentspecific phenotypes.
Abstract: Microbial biofilms, where organisms are intimately associated with each other and a solid substratum through binding and inclusion within an exopolymer matrix, are widely distributed in nature and disease. In the mouth, multispecies biofilms are associated not only with dental plaque and tooth decay but also with soft tissues of the buccal cavity and with most forms of periodontal disease. Organization of micro-organisms within biofilms confers, on the component species, properties which are not evident with the individual species grown independently or as planktonic populations in liquid media. While many of these properties relate to the establishment of functional, mixed-species consortia within the exopolymeric matrices, others relate to the establishment of physico-chemical gradients, within the biofilm, that modify the metabolism of the component cells. A consequence of biofilm growth that has profound implications for their control in the environment and in medicine is a markedly enhanced resistanc...

513 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
86% related
Antimicrobial
45.4K papers, 1M citations
84% related
Virulence
35.9K papers, 1.3M citations
83% related
Hydrogen peroxide
42.5K papers, 1M citations
82% related
Plasmid
44.3K papers, 1.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,430
20226,827
20212,025
20202,079
20191,885