scispace - formally typeset
Search or ask a question
Topic

Biofilm

About: Biofilm is a research topic. Over the lifetime, 23010 publications have been published within this topic receiving 906812 citations. The topic is also known as: biofilms.


Papers
More filters
Journal ArticleDOI
TL;DR: The biofilm matrix and molecular mechanism of antimicrobial resistance in bacterial biofilms are highlighted and the identification and inhibition of genes, which have the major role in biofilm formation, could be the effective approach for health care systems.
Abstract: A biofilm is a group of microorganisms, that causes health problems for the patients with indwelling medical devices via attachment of cells to the surface matrix. It increases the resistance of a microorganism for antimicrobial agents and developed the human infection. Current strategies are removed or prevent the microbial colonies from the medical devices, which are attached to the surfaces. This will improve the clinical outcomes in favor of the patients suffering from serious infectious diseases. Moreover, the identification and inhibition of genes, which have the major role in biofilm formation, could be the effective approach for health care systems. In a current review article, we are highlighting the biofilm matrix and molecular mechanism of antimicrobial resistance in bacterial biofilms.

434 citations

Journal ArticleDOI
TL;DR: The results indicate that hyphal cells are specialized to present adherence molecules that support biofilm integrity, and BCR1 is a downstream component of the hyphal regulatory network that couples expression of cell-surface genes to hyphal differentiation.

433 citations

Journal ArticleDOI
TL;DR: A review of recent advances in the study of the regulatory pathways that lead to swarming behavior of different model bacteria and the understanding of the transition between motile and sessile lifestyles of bacteria is provided.

432 citations

Journal ArticleDOI
TL;DR: Evidence was obtained that formate fermentation, urease activity, the response to oxidative stress, and, as a consequence thereof, acid and ammonium production are up-regulated in a biofilm.
Abstract: It is well known that biofilm formation by pathogenic staphylococci on implanted medical devices leads to "chronic polymer-associated infections." Bacteria in these biofilms are more resistant to antibiotics and the immune defense system than their planktonic counterparts, which suggests that the cells in a biofilm have altered metabolic activity. To determine which genes are up-regulated in Staphylococcus aureus biofilm cells, we carried out a comparative transcriptome analysis. Biofilm growth was simulated on dialysis membranes laid on agar plates. Staphylococci were cultivated planktonically in Erlenmeyer flasks with shaking. mRNA was isolated at five time points from cells grown under both conditions and used for hybridization with DNA microarrays. The gene expression patterns of several gene groups differed under the two growth conditions. In biofilm cells, the cell envelope appeared to be a very active compartment since genes encoding binding proteins, proteins involved in the synthesis of murein and glucosaminoglycan polysaccharide intercellular adhesin, and other enzymes involved in cell envelope synthesis and function were significantly up-regulated. In addition, evidence was obtained that formate fermentation, urease activity, the response to oxidative stress, and, as a consequence thereof, acid and ammonium production are up-regulated in a biofilm. These factors might contribute to survival, persistence, and growth in a biofilm environment. Interestingly, toxins and proteases were up-regulated under planktonic growth conditions. Physiological and biochemical tests for the up-regulation of urease, formate dehydrogenase, proteases, and the synthesis of staphyloxanthin confirmed the microarray data.

431 citations

Journal ArticleDOI
TL;DR: An overview of the occurrence, production and interaction of these components, their influence at one or more developmental stages of biofilm formation, and their potential role as virulence factors in pathogenic E. coli strains is presented.

430 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
86% related
Antimicrobial
45.4K papers, 1M citations
84% related
Virulence
35.9K papers, 1.3M citations
83% related
Hydrogen peroxide
42.5K papers, 1M citations
82% related
Plasmid
44.3K papers, 1.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,430
20226,827
20212,025
20202,079
20191,885