scispace - formally typeset
Search or ask a question
Topic

Biofilm

About: Biofilm is a research topic. Over the lifetime, 23010 publications have been published within this topic receiving 906812 citations. The topic is also known as: biofilms.


Papers
More filters
Journal ArticleDOI
TL;DR: Recent advances in knowledge about the biology and genetics of biofilm formation and the role of biofilms in enterococci pathogenesis are discussed.
Abstract: Enterococci are an important global cause of nosocomial infections, being increasingly associated with urinary tract infections, endocarditis, intra-abdominal and pelvic infections, catheter-related infections, surgical wound infections, and central nervous system infections. The two most common enterococci species are Enterococcus faecalis and Enterococcus faecium. Both are capable of producing biofilms, which consist of a population of cells attached irreversibly on various biotic and abiotic surfaces, encased in a hydrated matrix of exopolymeric substances. Many environmental and genetic factors are associated or have been proposed to be associated with the production of biofilm. This review discusses recent advances in knowledge about the biology and genetics of biofilm formation and the role of biofilms in enterococci pathogenesis.

374 citations

Journal ArticleDOI
TL;DR: A detailed comparison of clonally related wild-type and RSCV strains isolated from both CF sputum and laboratory biofilm cultures shows that RSCVs traits such as increased exopolysaccharide production leading to antibiotic tolerance, altered metabolism, and reduced immunogenicity may contribute to increased persistence in biofilms and in the airways of CF lungs.
Abstract: Pseudomonas aeruginosa is recognized for its ability to colonize diverse habitats, ranging from soil to immunocompromised people. The formation of surface-associated communities called biofilms is one factor thought to enhance colonization and persistence in these diverse environments. Another factor is the ability of P. aeruginosa to diversify genetically, generating phenotypically distinct subpopulations. One manifestation of diversification is the appearance of colony morphology variants on solid medium. Both laboratory biofilm growth and chronic cystic fibrosis (CF) airway infections produce rugose small-colony variants (RSCVs) characterized by wrinkled, small colonies and an elevated capacity to form biofilms. Previous reports vary on the characteristics attributable to RSCVs. Here we report a detailed comparison of clonally related wild-type and RSCV strains isolated from both CF sputum and laboratory biofilm cultures. The clinical RSCV had many characteristics in common with biofilm RSCVs. Transcriptional profiling and Biolog phenotypic analysis revealed that RSCVs display increased expression of the pel and psl polysaccharide gene clusters, decreased expression of motility functions, and a defect in growth on some amino acid and tricarboxylic acid cycle intermediates as sole carbon sources. RSCVs also elicited a reduced chemokine response from polarized airway epithelium cells compared to wild-type strains. A common feature of all RSCVs analyzed in this study is increased levels of the intracellular signaling molecule cyclic di-GMP (c-di-GMP). To assess the global transcriptional effects of elevated c-di-GMP levels, we engineered an RSCV strain that had elevated c-di-GMP levels but did not autoaggregate. Our results showed that about 50 genes are differentially expressed in response to elevated intracellular c-di-GMP levels. Among these genes are the pel and psl genes, which are upregulated, and flagellum and pilus genes, which are downregulated. RSCV traits such as increased exopolysaccharide production leading to antibiotic tolerance, altered metabolism, and reduced immunogenicity may contribute to increased persistence in biofilms and in the airways of CF lungs.

374 citations

Journal ArticleDOI
TL;DR: Standardization of the procedures, parameters and breakpoints, by official agencies, is needed before they are implemented in clinical microbiology laboratories for routine susceptibility testing, to obtain a deeper understanding of biofilm resistance mechanisms.

373 citations

Journal ArticleDOI
02 Dec 2005-Cell
TL;DR: Mycobacteria are unusual in encoding two GroEL paralogs, GroEL1 and GroEL2, which modulates synthesis of mycolates during biofilm formation and physically associates with KasA, a key component of the type II Fatty Acid Synthase involved in mycolic acid synthesis.

373 citations

01 Jan 2009
TL;DR: In this paper, cyclic voltammetry (CV) of wild type (WT) and mutant G. sulfurreducens strains was used to demonstrate the use of bound extracellular electron transfer mediators by Geobacter biofilms and the distinct roles of OmcB and OmcZ.
Abstract: Geobacteracea are distinct for their ability to reduce insoluble oxidants including minerals and electrodes without apparent reliance on soluble extracellular electron transfer (ET) mediators. This property makes them important anode catalysts in new generation microbial fuel cells (MFCs) because it obviates the need to replenish ET mediators otherwise necessary to sustain power. Here we report cyclic voltammetry (CV) of biofilms of wild type (WT) and mutant G. sulfurreducens strains grown on graphite cloth anodes acting as electron acceptors with acetate as the electron donor. Our analysis indicates that WT biofilms contain a conductive network of bound ET mediators in which OmcZ (outer membrane c-type cytochrome Z) participates in homogeneous ET (through the biofilm bulk) while OmcB mediates heterogeneous ET (across the biofilm/electrode interface); that type IV pili are important in both reactions; that OmcS plays a secondary role in homogenous ET; that OmcE, important in Fe(III) oxide reduction, is not involved in either reaction; that catalytic current is limited overall by the rate of microbial uptake of acetate; that protons generated from acetate oxidation act as charge compensating ions in homogenous ET; and that homogenous ET, when accelerated by fast voltammetric scan rates, is limited by diffusion of protons within the biofilm. These results provide the first direct electrochemical evidence substantiating utilization of bound ET mediators by Geobacter biofilms and the distinct roles of OmcB and OmcZ in the extracellular ET properties of anode-reducing G. sulfurreducens.

373 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
86% related
Antimicrobial
45.4K papers, 1M citations
84% related
Virulence
35.9K papers, 1.3M citations
83% related
Hydrogen peroxide
42.5K papers, 1M citations
82% related
Plasmid
44.3K papers, 1.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,430
20226,827
20212,025
20202,079
20191,885