scispace - formally typeset
Search or ask a question
Topic

Biofilm matrix

About: Biofilm matrix is a research topic. Over the lifetime, 1589 publications have been published within this topic receiving 110140 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Improvement through incorporation of a catalyst was such that concentrations of potassium monopersulfate of as low as 20 (mu)g/ml gave no recoverable survivors either on the discs or within the washings, which indicated advantages gained in hygienic cleansing of such modified surfaces.
Abstract: Biofilms of a mucoid clinical isolate of Pseudomonas aeruginosa (24 h; ca. 10(sup6) CFU/cm(sup2)) were established by immersion of polymer discs in nutrient broth cultures at 37(deg)C. Biofilms exposed for 30 min to various concentrations (0 to 3 mg/ml) of hydrogen peroxide or potassium monopersulfate were rinsed and shaken vigorously in sterile saline to detach loosely associated cells, and the residual viable attached population was quantified by a blot succession method on agar plates. Incorporation of copper and cobalt phthalocyanine catalysts within the polymers significantly enhanced the activity of these oxidizing biocides towards biofilm bacteria by several orders of magnitude. Biofilms established on the control discs resisted treatment with concentrations of either agent of up to 3 mg/ml. Enhancement through incorporation of a catalyst was such that concentrations of potassium monopersulfate of as low as 20 (mu)g/ml gave no recoverable survivors either on the discs or within the washings. Catalysts such as these will promote the formation of active oxygen species from a number of oxidizing agents such as peroxides and persulfates, and it is thought that generation of these at the surface-biofilm interface concentrates the antimicrobial effect to the interfacial cells and generates a diffusion pump which further provides active species to the biofilm matrix. The survivors of low-concentration treatments with these agents were more readily removed from the catalyst-containing discs than from the control discs. This indicated advantages gained in hygienic cleansing of such modified surfaces.

51 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated a new and innovative strategy for targeting polysaccharides found on the bacterial cell envelope and the biofilm matrix using the boronic acid functionalized and highly effective photosensitizer (PS) silicon(IV) phthalocyanine.
Abstract: Advanced methods for preventing and controlling hospital-acquired infections via eradication of free-floating bacteria and bacterial biofilms are of great interest. In this regard, the attractiveness of unconventional treatment modalities such as antimicrobial photodynamic therapy (aPDT) continues to grow. This study investigated a new and innovative strategy for targeting polysaccharides found on the bacterial cell envelope and the biofilm matrix using the boronic acid functionalized and highly effective photosensitizer (PS) silicon(IV) phthalocyanine. This strategy has been found to be successful in treating planktonic cultures and biofilms of Gram-negative E. coli. An additional advantage of boronic acid functionality is a possibility to anchor the tailor made PS to poly(vinyl alcohol) and to fabricate a self-disinfecting coating.

51 citations

Journal ArticleDOI
TL;DR: The study suggests that dispersing S. aureus by protease can be of use while devising strategies against S.Aureus biofilms, and suggests that Bap might also be involved in eDNA retention in the biofilm matrix that aids in biofilm stability.
Abstract: Background & objectives: Among cell surface proteins, biofilm-associated protein (Bap) promotes biofilm development in Staphylococcus aureus strains. The aim of this study was to investigate proteinase-mediated biofilm dispersion in different isolates of S. aureus. Methods: Biofilm assay was done in 96-well microtitre plate to evaluate the effect of proteinase K on biofilms of bovine mastitis S. Aureus isolates. Extracellular polymeric substances were extracted and evaluated for their composition (protein, polysaccharides and extracellular DNA), before and after the proteinase K treatment. Results: Biofilm assay showed that 2 μg/ml proteinase K significantly inhibited biofilm development in bap-positive S. aureus V329 as well as other S. aureus isolates (SA7, SA10, SA33, SA352), but not in bap-mutant M556 and SA392 (a weak biofilm-producing strain). Proteinase K treatment on S. aureus planktonic cells showed that there was no inhibition of planktonic growth up to 32 μg/ml of proteinase K. Proteinase K treatment on 24 h old preformed biofilms showed an enhanced dispersion of bap-positive V329 and SA7, SA10, SA33 and SA352 biofilms; however, proteinase K did not affect the bap-mutant S. aureus M556 and SA392 biofilms. Biofilm compositions study before and after proteinase K treatment indicated that Bap might also be involved in eDNA retention in the biofilm matrix that aids in biofilm stability. When proteinase K was used in combination with antibiotics, a synergistic effect in antibiotic efficacy was observed against all biofilm-forming S. aureus isolates. Interpretation & conclusions: Proteinase K inhibited biofilms growth in S. aureus bovine mastitis isolates but did not affect their planktonic growth. An enhanced dispersion of preformed S. aureus biofilms was observed on proteinase K treatment. Proteinase K treatment with antibiotics showed a synergistic effect against S. aureus biofilms. The study suggests that dispersing S. aureus by protease can be of use while devising strategies againstS. aureus biofilms.

51 citations

Journal ArticleDOI
TL;DR: The new insights into the application of nanoparticles in controlling microbial biofilm will be considered in this review and may represent an interesting approach for the medical field which opening new perspectives for the design of modified surfaces with potent anti-biofilm properties.

50 citations

Journal ArticleDOI
TL;DR: The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules and to test their use in combination with conventional antibiotics.
Abstract: Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules. The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules and to test their use in combination with conventional antibiotics.

50 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
85% related
Virulence
35.9K papers, 1.3M citations
83% related
Plasmid
44.3K papers, 1.9M citations
82% related
Mutant
74.5K papers, 3.4M citations
79% related
Membrane protein
30.2K papers, 1.7M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20224
2021138
2020189
2019157
2018121
2017113