scispace - formally typeset
Search or ask a question
Topic

Biofilm matrix

About: Biofilm matrix is a research topic. Over the lifetime, 1589 publications have been published within this topic receiving 110140 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This is the first report of the improvement of levan production in microbes deficient inextracellular proteases and TasA, and the NK-Q-7 strain exhibits outstanding characteristics for extracellular protein production or extracllular protein related product synthesis.
Abstract: Microbial levan is an important biopolymer with considerable potential in food and medical applications. Bacillus amyloliquefaciens NK-ΔLP strain can produce high-purity, low-molecular-weight levan, but production is relatively low. To enhance the production of levan, six extracellular protease genes (bpr, epr, mpr, vpr, nprE and aprE), together with the tasA gene (encoding the major biofilm matrix protein TasA) and the pgsBCA cluster (responsible for poly-γ-glutamic acid (γ-PGA) synthesis), were intentionally knocked out in the Bacillus amyloliquefaciens NK-1 strain. The highest levan production (31.1 g/L) was obtained from the NK-Q-7 strain (ΔtasA, Δbpr, Δepr, Δmpr, Δvpr, ΔnprE, ΔaprE and ΔpgsBCA), which was 103% higher than that of the NK-ΔLP strain (ΔpgsBCA) (15.3 g/L). Furthermore, the NK-Q-7 strain also showed a 94.1% increase in α-amylase production compared with NK-ΔLP strain, suggesting a positive effect of extracellular protease genes deficient on the production of endogenously secreted proteins. This is the first report of the improvement of levan production in microbes deficient in extracellular proteases and TasA, and the NK-Q-7 strain exhibits outstanding characteristics for extracellular protein production or extracellular protein related product synthesis.

38 citations

Journal ArticleDOI
TL;DR: The results obtained by the quantification of extracellular polymers and by wheat germ agglutinin (WGA) fluorescent detection of glycoproteins containing β(1→4)-N-acetyl-d-glucosamine support the hypothesis that farnesol causes disruption of the cytoplasmic membrane and consequently release of cellular content.
Abstract: Staphylococcus epidermidis is the most frequent cause of nosocomial sepsis and catheter-related infections in which biofilm formation is considered to be one of the main virulence mechanisms. Moreover, their increased resistance to conventional antibiotic therapy enhances the need to develop new therapeutical agents. Farnesol, a natural sesquiterpenoid present in many essential oils, has been described as impairing bacterial growth. The aim of this study was to evaluate the effect of farnesol on the structure and composition of biofilm matrix of S. epidermidis. Biofilms formed in the presence of farnesol (300 μM) contained less biomass, and displayed notable changes in the composition of the biofilm matrix. Changes in the spacial structure were also verified by confocal scanning laser microscopy (CSLM). The results obtained by the quantification of extracellular polymers and by wheat germ agglutinin (WGA) fluorescent detection of glycoproteins containing β(1→4)-N-acetyl-d-glucosamine support the hypothesis that farnesol causes disruption of the cytoplasmic membrane and consequently release of cellular content.

38 citations

Journal ArticleDOI
TL;DR: This work discovered that CdrA also binds to Pel and promotes biofilm formation by strains in which Psl is not dominant, and suggests that cdrA plays a common role as a biofilm matrix cross-linker across P. aeruginosa isolates with different EPS.
Abstract: Pseudomonas aeruginosa is an important pathogen that causes chronic infections that involve multicellular aggregates called biofilms. Within biofilms, bacteria are surrounded in a protective extracellular matrix of proteins, exopolysaccharides (EPS), and DNA. A key P. aeruginosa matrix protein is an extracellular adhesin called CdrA, which promotes aggregation by binding to the EPS Psl and via CdrA-CdrA interactions. We hypothesized that because of its ability to bind Psl, CdrA would be important only for strains that use Psl as the primary EPS (e.g., the laboratory strain PAO1). Thus, we predicted that cdrA might be dispensable for biofilm formation by strains that do not utilize Psl (e.g., the laboratory strain PA14). Instead, we observed that cdrA deletion strains exhibited biofilm defects, regardless of their EPS dependencies. We screened a panel of clinical and environmental P. aeruginosa isolates for the presence of the cdrA allele and production of CdrA protein. All isolates that we tested contained the cdrA allele, and these alleles had minimal sequence variation compared to the reference PAO1 cdrA gene. Additionally, all isolates except one produced detectable CdrA protein. We investigated the possible mechanisms of CdrA-promoted biofilm formation in these strains where Psl is not dominant, and we discovered that CdrA binds to Pel. Although Psl and Pel chemical structures are distinct, this appears to be a specific interaction, since previous work has shown that CdrA binds discriminately to other EPS. Our findings provide new understanding of biofilm formation across P. aeruginosa isolates and emphasize the versatility of CdrA.IMPORTANCE Depending upon the strain, Pseudomonas aeruginosa can use different exopolysaccharides (e.g., Psl, Pel, and alginate) to build its biofilm matrix. Previously, we demonstrated that the biofilm matrix protein CdrA binds to Psl, promoting biofilm formation and aggregate stability. As such, it was thought that CdrA might be important for biofilm assembly only in strains that rely upon Psl. However, past studies indicated that CdrA can interact with monosaccharides not present in Psl, including N-acetylglucosamine, a constituent of another EPS called Pel. We discovered that CdrA also binds to Pel and promotes biofilm formation by strains in which Psl is not dominant. Thus, our findings suggest that CdrA plays a common role as a biofilm matrix cross-linker across P. aeruginosa isolates with different EPS.

37 citations

Journal ArticleDOI
TL;DR: CSNP-DNase-CDH exhibited a higher activity than CSNPs loaded with only DNase or CDH for inhibiting monomicrobial and polymicrobial biofilm formation as well as for disrupting pre-formed biofilms.

37 citations

Journal ArticleDOI
TL;DR: It is reported that spermine acts as an exogenous cue that inhibits V. cholerae biofilm formation through the NspS–MbaA signaling system, and a model is proposed illustrating how this system may communicate exogenous polyamine content to the cell to controlBiofilm formation in the aquatic environment and within the human intestine.

37 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
85% related
Virulence
35.9K papers, 1.3M citations
83% related
Plasmid
44.3K papers, 1.9M citations
82% related
Mutant
74.5K papers, 3.4M citations
79% related
Membrane protein
30.2K papers, 1.7M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20224
2021138
2020189
2019157
2018121
2017113