scispace - formally typeset
Search or ask a question
Topic

Biofilm matrix

About: Biofilm matrix is a research topic. Over the lifetime, 1589 publications have been published within this topic receiving 110140 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The novel TTCP-QADM composites possessing a strong antibacterial capability, together with calcium phosphate ion release and good mechanical properties, are promising for dental restorations to reduce biofilm growth and recurrent caries.
Abstract: Tooth caries is a carbohydrate-modified bacterial infectious disease, and recurrent caries is a frequent reason for restoration failure. The objective of this study was to develop a novel antibacterial composite using tetracalcium phosphate (TTCP) fillers and bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, which is a quaternary ammonium dimethacrylate (QADM). QADM was synthesized using 2-(N,N-dimethylamino)ethyl methacrylate and 2-bromoethyl methacrylate and incorporated into a resin. The resin was filled with 40% TTCP and 30% glass particles. The following QADM mass fractions in the composite were tested: 0%, 6%, 12%, and 18%. Streptococcus mutans biofilms were formed on the composites and the colony-forming units (CFUs), metabolic activity, and lactic acid production were measured. The TTCP-QADM composite had flexural strength and elastic modulus similar to those of two commercial composites (p > 0.1). Increasing the QADM content in TTCP composite greatly decreased the bacteria growth and biofilm matrix production. There were significantly more dead bacteria with increasing QADM content. TTCP composite containing 18% QADM had biofilm CFU, metabolic activity, and acid production about half of those without QADM. Inversely linear relationships were established between QADM mass fraction and S. mutans biofilm CFU, metabolic activity, and acid production, with correlation coefficients R(2) ≥ 0.98. In conclusion, TTCP-QADM composites were developed and the effect of QADM mass fraction on the antibacterial properties of the composite was determined for the first time. The novel TTCP-QADM composites possessing a strong antibacterial capability, together with calcium phosphate ion release and good mechanical properties, are promising for dental restorations to reduce biofilm growth and recurrent caries.

29 citations

Journal ArticleDOI
06 Nov 2018-Mbio
TL;DR: The data suggest that the competitive effect of Psl is not associated with its structural role in cross-linking the matrix and adhering to P. aeruginosa cells but is instead mediated through the activation of the diguanylate cyclase SiaD, which enhances biofilm surface spreading and expansion of microcolonies in the later stages of biofilm development.
Abstract: Mixed-species biofilms display a number of emergent properties, including enhanced antimicrobial tolerance and communal metabolism. These properties may depend on interspecies relationships and the structure of the biofilm. However, the contribution of specific matrix components to emergent properties of mixed-species biofilms remains poorly understood. Using a dual-species biofilm community formed by the opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus, we found that whilst neither Pel nor Psl polysaccharides, produced by P. aeruginosa, affect relative species abundance in mature P. aeruginosa and S. aureus biofilms, Psl production is associated with increased P. aeruginosa abundance and reduced S. aureus aggregation in the early stages of biofilm formation. Our data suggest that the competitive effect of Psl is not associated with its structural role in cross-linking the matrix and adhering to P. aeruginosa cells but is instead mediated through the activation of the diguanylate cyclase SiaD. This regulatory control was also found to be independent of the siderophore pyoverdine and Pseudomonas quinolone signal, which have previously been proposed to reduce S. aureus viability by inducing lactic acid fermentation-based growth. In contrast to the effect mediated by Psl, Pel reduced the effective crosslinking of the biofilm matrix and facilitated superdiffusivity in microcolony regions. These changes in matrix cross-linking enhance biofilm surface spreading and expansion of microcolonies in the later stages of biofilm development, improving overall dual-species biofilm growth and increasing biovolume severalfold. Thus, the biofilm matrix and regulators associated with matrix production play essential roles in mixed-species biofilm interactions. IMPORTANCE Bacteria in natural and engineered environments form biofilms that include many different species. Microorganisms rely on a number of different strategies to manage social interactions with other species and to access resources, build biofilm consortia, and optimize growth. For example, Pseudomonas aeruginosa and Staphylococcus aureus are biofilm-forming bacteria that coinfect the lungs of cystic fibrosis patients and diabetic and chronic wounds. P. aeruginosa is known to antagonize S. aureus growth. However, many of the factors responsible for mixed-species interactions and outcomes such as infections are poorly understood. Biofilm bacteria are encased in a self-produced extracellular matrix that facilitates interspecies behavior and biofilm development. In this study, we examined the poorly understood roles of the major matrix biopolymers and their regulators in mixed-species biofilm interactions and development.

29 citations

Journal ArticleDOI
TL;DR: CalY is a bifunctional protein, which switches from a cell‐surface adhesin activity in early stationary phase, to the production of fibers in mid‐stationary phase and in biofilms.
Abstract: The extracellular biofilm matrix often contains a network of amyloid fibers which, in the human opportunistic pathogen Bacillus cereus, includes the two homologous proteins TasA and CalY. We show here, in the closely related entomopathogenic species Bacillus thuringiensis, that CalY also displays a second function. In the early stationary phase of planktonic cultures, CalY was located at the bacterial cell-surface, as shown by immunodetection. Deletion of calY revealed that this protein plays a major role in adhesion to HeLa epithelial cells, to the insect Galleria mellonella hemocytes and in the bacterial virulence against larvae of this insect, suggesting that CalY is a cell-surface adhesin. In mid-stationary phase and in biofilms, the location of CalY shifted from the cell surface to the extracellular medium, where it was found as fibers. The transcription study and the deletion of sipW suggested that CalY change of location is due to a delayed activity of the SipW signal peptidase. Using purified CalY, we found that the protein polymerization occurred only in the presence of cell-surface components. CalY is, therefore, a bifunctional protein, which switches from a cell-surface adhesin activity in early stationary phase, to the production of fibers in mid-stationary phase and in biofilms.

29 citations

Journal ArticleDOI
17 Jun 2020
TL;DR: The findings of this study represent the potent bioactivities of P. sophore mucus extract for the first time, which could be explored further as an alternative to antibiotics or chemically synthesized antibiofilm agents.
Abstract: Epidermal fish mucus comprises of diverse bioactive metabolites which plays an immense role in defense mechanisms and other important cellular activities Primarily, this study aims to screen the unexplored mucus extract of Puntius sophore (P sophore) for its antagonistic potential against common pathogens, which are commonly implicated in foodborne and healthcare associated infections, with effects on their adhesion and biofilm formation Profiling of the skin mucus was carried out by High Resolution-Liquid Chromatography Mass Spectrometry (HR-LCMS), followed by antibacterial activity and assessment of antibiofilm potency and efficacy on the development, formation, and texture of biofilms Furthermore, bacterial cell damage, viability within the biofilm, checkerboard test, and cytotoxicity were also evaluated As a result, P sophore mucus extract was found to be effective against all tested strains It also impedes the architecture of biofilm matrix by affecting the viability and integrity of bacterial cells within biofilms and reducing the total exopolysaccharide content A synergy was observed between P sophore mucus extract and gentamicin for Escherichia coli (E coli), Pseudomonas aeruginosa (P aeruginosa), and Bacillus subtilis (B subtilis), whereas, an additive effect for Staphylococcus aureus (S aureus) Thus, our findings represent the potent bioactivities of P sophore mucus extract for the first time, which could be explored further as an alternative to antibiotics or chemically synthesized antibiofilm agents

29 citations

Journal ArticleDOI
TL;DR: An overview of Shewanella biofilm biology is provided with the focus on biofilm dynamics, biofilm matrix, and key signalling systems involved in Shewanelle biofilm development.

29 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
85% related
Virulence
35.9K papers, 1.3M citations
83% related
Plasmid
44.3K papers, 1.9M citations
82% related
Mutant
74.5K papers, 3.4M citations
79% related
Membrane protein
30.2K papers, 1.7M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20224
2021138
2020189
2019157
2018121
2017113