scispace - formally typeset
Search or ask a question
Topic

Biofilm matrix

About: Biofilm matrix is a research topic. Over the lifetime, 1589 publications have been published within this topic receiving 110140 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is indicated that biofilms can grow in the presence of Nuc1 activity and solid surface hydrophobicity significantly affected the biofilm 3D-architecture, which suggests that the virulence of S. aureus NewmanBiofilms is increased by its nuclease production in particular on a hydrophilic surface.
Abstract: Staphylococcus aureus is commonly associated with biofilm-related infections and contributes to the large financial loss that accompany nosocomial infections. The micrococcal nuclease Nuc1 enzyme limits biofilm formation via cleavage of eDNA, a structural component of the biofilm matrix. Solid surface hydrophobicity influences bacterial adhesion forces and may as well influence eDNA production. Therefore, it is hypothesized that the impact of Nuc1 activity is dependent on surface characteristics of solid surfaces. For this reason, this study investigated the influence of solid surface hydrophobicity on S. aureus Newman biofilms where Nuc1 is constitutively produced. To this end, biofilms of both a wild-type and a nuc1 knockout mutant strain, grown on glass, salinized glass and Pluronic F-127-coated silanized glass were analysed. Results indicated that biofilms can grow in the presence of Nuc1 activity. Also, Nuc1 and solid surface hydrophobicity significantly affected the biofilm 3D-architecture. In particular, biofilm densities of the wild-type strain on hydrophilic surfaces appeared higher than of the mutant nuc1 knockout strain. Since virulence is related to bacterial cell densities, this suggests that the virulence of S. aureus Newman biofilms is increased by its nuclease production in particular on a hydrophilic surface.

20 citations

Journal ArticleDOI
TL;DR: The sub-minimal inhibitory concentration of several antibiotics either alone or in combination has been shown to inhibit biofilm formation and down-regulate the production of virulence factors.
Abstract: Background The establishment of a biofilm by most pathogenic bacteria has been known as one of the resistance mechanisms against antibiotics. A biofilm is a structural component where the bacterial community adheres to the biotic or abiotic surfaces by the help of Extracellular Polymeric Substances (EPS) produced by bacterial cells. The biofilm matrix possesses the ability to resist several adverse environmental factors, including the effect of antibiotics. Therefore, the resistance of bacterial biofilm-forming cells could be increased up to 1000 times than the planktonic cells, hence requiring a significantly high concentration of antibiotics for treatment. Methods Up to the present, several methodologies employing antibiotics as an anti-biofilm, antivirulence or quorum quenching agent have been developed for biofilm inhibition and eradication of a pre-formed mature biofilm. Results Among the anti-biofilm strategies being tested, the sub-minimal inhibitory concentration of several antibiotics either alone or in combination has been shown to inhibit biofilm formation and down-regulate the production of virulence factors. The combinatorial strategies include (1) combination of multiple antibiotics, (2) combination of antibiotics with non-antibiotic agents and (3) loading of antibiotics onto a carrier. Conclusion The present review paper describes the role of several antibiotics as biofilm inhibitors and also the alternative strategies adopted for applications in eradicating and inhibiting the formation of biofilm by pathogenic bacteria.

20 citations

Journal Article
TL;DR: The data suggest that the employment of EDTA or other chemicals destabilizers of the biofilm matrix, in combination with antifungal drugs, could lead to the development of new strategies for the management of infections associated to Candida biofilm.
Abstract: OBJECTIVE: Candida albicans biofilm is frequently found on artificial surfaces and the infections related to biofilm are difficult to eliminate, as they require the removal of artificial devices and treatment with antifungal drugs. Nowadays, fungal growth in biofilms is difficult to eradicate with conventional antifungal drugs such as fluconazole. Among chelating agents, disodium salt-Ethylene Diamine Tetraacetic Acid (EDTA) is known to have antifungal activity. In this study, we examined the in vitro activity of the EDTA and the antifungal drug fluconazole against C. albicans mature biofilm. MATERIALS AND METHODS: C. albicans ATCC 20191, fluconazole-susceptible strain, was grown at an inoculum starter of 1 x 106 cells/ml for 72 h in 24-well microtiter plates and was further treated for 24 h with EDTA and/or fluconazole. Antifungal activities in biofilms were expressed as reduction in optical density (OD) determined by a 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)- 2H-tetrazolium-5-carboxanilide (XTT) colorimetric assay and compared to untreated biofilms. RESULTS: Colorimetric readings revealed that EDTA alone (at 25 and 2.5 mM) significantly reduced fungal metabolic activity in preformed biofilms. Also, EDTA combined with fluconazole significantly reduced the growth of biofilm when compared to biofilm treated with fluconazole alone (at 25 and 2.5 μg/ml). CONCLUSIONS: Our data suggest that the employment of EDTA or other chemicals destabilizers of the biofilm matrix, in combination with antifungal drugs, could lead to the development of new strategies for the management of infections associated to Candida biofilm. Another relevant result of our study suggests that the initial cell concentration, probably through mechanisms of quorum sensing, affects the cellular viability during the process of biofilm formation.

20 citations

Journal ArticleDOI
TL;DR: Low concentrations of Cd2+ and montmorillonite or their combinations enhanced biofilm formation by increasing polysaccharides proportion in the biofilm matrix, and the maximum adsorption capacity of C d2+ by biofilm was increased by 1.5 times.

20 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used high-speed Aqua Sperm micromotors obtained from North African catfish (Clarias gariepinus, B. 1822) to destroy bacterial biofilm.
Abstract: Microscale self-propelled robots show great promise in the biomedical field and are the focus of many researchers. These tiny devices, which move and navigate by themselves, are typically based on inorganic microstructures that are not biodegradable and potentially toxic, often using toxic fuels or elaborate external energy sources, which limits their real-world applications. One potential solution to these issues is to go back to nature. Here, the authors use high-speed Aqua Sperm micromotors obtained from North African catfish (Clarias gariepinus, B. 1822) to destroy bacterial biofilm. These Aqua Sperm micromotors use water-induced dynein ATPase catalyzed adenosine triphosphate (ATP) degradation as biocompatible fuel to trigger their fast speed and snake-like undulatory locomotion that facilitate biofilm destruction in less than one minute. This efficient biofilm destruction is due to the ultra-fast velocity as well as the head size of Aqua Sperm micromotors being similar to bacteria, which facilitates their entry to and navigation within the biofilm matrix. In addition, the authors demonstrate the real-world application of Aqua Sperm micromotors by destroying biofilms that had colonized medical and laboratory tubing. The implemented system extends the biomedical application of Aqua Sperm micromotors to include hybrid robots for fertilization or cargo tasks.

20 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
85% related
Virulence
35.9K papers, 1.3M citations
83% related
Plasmid
44.3K papers, 1.9M citations
82% related
Mutant
74.5K papers, 3.4M citations
79% related
Membrane protein
30.2K papers, 1.7M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20224
2021138
2020189
2019157
2018121
2017113