scispace - formally typeset
Search or ask a question
Topic

Biofilm matrix

About: Biofilm matrix is a research topic. Over the lifetime, 1589 publications have been published within this topic receiving 110140 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Inorganic, metallic, polymeric, and carbon-based NEs are discussed for their outstanding chemical flexibility, stability, and antibiofilm properties manifested when converted into bioactive materials, assembled on-site or delivered at biofilm-surface interfaces.
Abstract: Recent advances in nanotechnology provide unparalleled flexibility to control the composition, size, shape, surface chemistry, and functionality of materials. Currently available engineering approaches allow precise synthesis of nanocompounds (e.g., nanoparticles, nanostructures, nanocrystals) with both top-down and bottom-up design principles at the submicron level. In this context, these "nanoelements" (NEs) or "nanosized building blocks" can 1) generate new nanocomposites with antibiofilm properties or 2) be used to coat existing surfaces (e.g., teeth) and exogenously introduced surfaces (e.g., restorative or implant materials) for prevention of bacterial adhesion and biofilm formation. Furthermore, functionalized NEs 3) can be conceived as nanoparticles to carry and selectively release antimicrobial agents after attachment or within oral biofilms, resulting in their disruption. The latter mechanism includes "smart release" of agents when triggered by pathogenic microenvironments (e.g., acidic pH or low oxygen levels) for localized and controlled drug delivery to simultaneously kill bacteria and dismantle the biofilm matrix. Here we discuss inorganic, metallic, polymeric, and carbon-based NEs for their outstanding chemical flexibility, stability, and antibiofilm properties manifested when converted into bioactive materials, assembled on-site or delivered at biofilm-surface interfaces. Details are provided on the emerging concept of the rational design of NEs and recent technological breakthroughs for the development of a new generation of nanocoatings or functional nanoparticles for biofilm control in the oral cavity.

19 citations

Journal ArticleDOI
TL;DR: Using the cantilever-array technique, this work demonstrates that coating of gold surfaces with mono- or disaccharides results in a reduction of the bacterial adhesion of the biofilm-forming bacterium Bacillus subtilis NCIB 3610 to these gold surfaces, and investigates the underlying molecular interactions.
Abstract: The growth of bacterial biofilms in pipes and food tanks causes severe problems in industry. Biofilms growing on medical implants or catheters are of great concern, as they can cause serious infections and decrease the functionality of the medical device. The prevention of bacterial adhesion--the first step in colonization and biofilm formation--is therefore very important. Current research comprises alterations in surface properties, the prevention of adhesin biosynthesis, inhibition with receptor analogs, or the development of anti-adhesive vaccines. We present a new approach that allows us to study bacterial adhesion with high sensitivity in real-time while testing several different surfaces in parallel. Using the cantilever-array technique we demonstrate that coating of gold surfaces with mono- or disaccharides results in a reduction of the bacterial adhesion of the biofilm-forming bacterium Bacillus subtilis NCIB 3610 to these gold surfaces. This reduction in bacterial adhesion is independent of the studied carbohydrate. Using several mutant strains, we investigate the underlying molecular interactions, and our results suggest that adhesion to gold surfaces is mediated by thiol groups present in proteins of the bacterial cell membrane or biofilm matrix proteins expressed at low levels by the wild-type strain. Furthermore, our data indicate that the adhesion of B. subtilis NCIB 3610 to carbohydrate-coated gold surfaces is facilitated by interactions between carbohydrates installed on the cantilever gold surface and an exopolysaccharide expressed by this strain. Understanding general and specific contributions of molecular interactions mediating bacterial adhesion will enable its prevention in the future.

19 citations

Journal ArticleDOI
TL;DR: The helix radius is identified here as an important parameter that governs how much sacrificial energy dissipation capacity can be stored in protein networks, where beta-helices offer unique properties.
Abstract: Alpha-helices and beta-sheets are the two most common secondary structure motifs in proteins. Beta-helical structures merge features of the two motifs, containing two or three beta-sheet faces connected by loops or turns in a single protein. Beta-helical structures form the basis of proteins with diverse mechanical functions such as bacterial adhesins, phage cell-puncture devices, antifreeze proteins, and extracellular matrices. Alpha-helices are commonly found in cellular and extracellular matrix components, whereas beta-helices such as curli fibrils are more common as bacterial and biofilm matrix components. It is currently not known whether it may be advantageous to use one helical motif over the other for different structural and mechanical functions. To better understand the mechanical implications of using different helix motifs in networks, here we use Steered Molecular Dynamics (SMD) simulations to mechanically unfold multiple alpha- and beta-helical proteins at constant velocity at the single molecule scale. We focus on the energy dissipated during unfolding as a means of comparison between proteins and work normalized by protein characteristics (initial and final length, # H-bonds, # residues, etc.). We find that although alpha-helices such as keratin and beta-helices CsgA and CsgB can require similar amounts of work to unfold, the normalized work per hydrogen bond, initial end to end length, and number of residues is greater for beta-helices at the same pulling rate. To explain this, we analyze the orientation of the backbone alpha carbons and backbone hydrogen bonds during unfolding. We find that the larger width and shorter height of beta-helices results in smaller angles between the protein backbone and the pulling direction during unfolding. As subsequent strands are separated from the beta-helix core, the angle between the backbone and the pulling direction diminishes. This marks a transition where beta-sheet hydrogen bonds become loaded predominantly in a collective shearing mode, which requires a larger rupture force. This finding underlines the importance of geometry in optimizing resistance to mechanical unfolding in proteins. The helix radius is identified here as an important parameter that governs how much sacrificial energy dissipation capacity can be stored in protein networks, where beta-helices offer unique properties.

19 citations

Journal ArticleDOI
TL;DR: It is believed that the extracellular polymeric substances of biofilms play a role as oxidant sinks (particularly HOCl), protecting the cells inside the biofilm matrix from the reactive oxidants produced by the catalytic reactions of the Cu(II)/Cu(I) redox couple with PMS.

19 citations

Journal ArticleDOI
24 Apr 2013-PLOS ONE
TL;DR: The data support a role of LytF in the H2O2 eDNA dependent release of S. gordonii as part of the competence stress pathway responding to oxidative stress.
Abstract: Extracellular DNA (eDNA) is an important component of the biofilm matrix produced by many bacteria. In general, the release of eDNA is associated with the activity of muralytic enzymes leading to obvious cell lysis. In the Gram-positive oral commensal Streptococcus gordonii, eDNA release is dependent on pyruvate oxidase generated hydrogen peroxide (H2O2). Addition of H2O2 to cells grown under conditions non-permissive for H2O2 production causes eDNA release. Furthermore, eDNA release is maximal under aerobic growth conditions known to induce pyruvate oxidase gene expression and H2O2 production. Obvious cell lysis, however, does not occur. Two enzymes have been recently associated with eDNA release in S. gordonii. The autolysin AtlS and the competence regulated murein hydrolase LytF. In the present report, we investigated the role of both proteins in the H2O2 dependent eDNA release process. Single and double mutants in the respective genes for LytF and AtlS released less eDNA under normal growth conditions, but the AtlS mutant was still inducible for eDNA release by external H2O2. Moreover, we showed that the AtlS mutation interfered with the ability of S. gordonii to produce eDNA release inducing amounts of H2O2. Our data support a role of LytF in the H2O2 eDNA dependent release of S. gordonii as part of the competence stress pathway responding to oxidative stress.

19 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
85% related
Virulence
35.9K papers, 1.3M citations
83% related
Plasmid
44.3K papers, 1.9M citations
82% related
Mutant
74.5K papers, 3.4M citations
79% related
Membrane protein
30.2K papers, 1.7M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20224
2021138
2020189
2019157
2018121
2017113