scispace - formally typeset
Search or ask a question
Topic

Biofilm matrix

About: Biofilm matrix is a research topic. Over the lifetime, 1589 publications have been published within this topic receiving 110140 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that the use of DspB-loaded multilayer coatings presents a promising method for creating biocompatible surfaces with high antibiofilm efficiency, especially when combined with conventional antimicrobial treatment of dispersed bacteria.
Abstract: We developed a highly efficient, biocompatible surface coating that disperses bacterial biofilms through enzymatic cleavage of the extracellular biofilm matrix. The coating was fabricated by binding the naturally existing enzyme dispersin B (DspB) to surface-attached polymer matrices constructed via a layer-by-layer (LbL) deposition technique. LbL matrices were assembled through electrostatic interactions of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMAA), followed by chemical cross-linking with glutaraldehyde and pH-triggered removal of PMAA, producing a stable PAH hydrogel matrix used for DspB loading. The amount of DspB loaded increased linearly with the number of PAH layers in surface hydrogels. DspB was retained within these coatings in the pH range from 4 to 7.5. DspB-loaded coatings inhibited biofilm formation by two clinical strains of Staphylococcus epidermidis. Biofilm inhibition was ≥98% compared to mock-loaded coatings as determined by CFU enumeration. In addition, DspB-loaded coatings did not inhibit attachment or growth of cultured human osteoblast cells. We suggest that the use of DspB-loaded multilayer coatings presents a promising method for creating biocompatible surfaces with high antibiofilm efficiency, especially when combined with conventional antimicrobial treatment of dispersed bacteria.

93 citations

Journal ArticleDOI
TL;DR: It is shown here that Esp cleaves autolysin (Atl)-derived murein hydrolases and prevents staphylococcal release of DNA, which serves as extracellular matrix in biofilms and appears to be perturbed by the Esp protease of S. aureus.

93 citations

Journal ArticleDOI
TL;DR: In an in vitro model, alginate lyase dispersion of P. aeruginosa biofilms and enzyme synergy with tobramycin are completely decoupled from catalytic activity, and equivalent antibiofilm effects can be achieved with bovine serum albumin or simple amino acids.
Abstract: More than 2 decades of study support the hypothesis that alginate lyases are promising therapeutic candidates for treating mucoid Pseudomonas aeruginosa infections. In particular, the enzymes' ability to degrade alginate, a key component of mucoid biofilm matrix, has been the presumed mechanism by which they disrupt biofilms and enhance antibiotic efficacy. The systematic studies reported here show that, in an in vitro model, alginate lyase dispersion of P. aeruginosa biofilms and enzyme synergy with tobramycin are completely decoupled from catalytic activity. In fact, equivalent antibiofilm effects can be achieved with bovine serum albumin or simple amino acids. These results provide new insights into potential mechanisms of alginate lyase therapeutic activity, and they should motivate a careful reexamination of the fundamental assumptions underlying interest in enzymatic biofilm dispersion.

92 citations

Journal ArticleDOI
TL;DR: The results show that the binding of lectins to bio Films does not necessarily prove the presence of specific target sugars in the extracellular polymeric substances (EPS) in biofilms.
Abstract: Three strains of Sphingomonas were grown as biofilms and tested for binding of five fluorescently labeled lectins (Con A-type IV-TRITC or -Cy5, Pha-E-TRITC, PNA-TRITC, UEA 1-TRITC, and WGA-Texas red). Only ConA and WGA were significantly bound by the biofilms. Binding of the five lectins to artificial biofilms made of the commercially available Sphingomonas extracellular polysaccharides was similar to binding to living biofilms. Staining of the living and artificial biofilms by ConA might be explained as binding of the lectin to the terminal mannosyl and terminal glucosyl residues in the polysaccharides secreted by Sphingomonas as well as to the terminal mannosyl residue in glycosphingolipids. Staining of the biofilms by WGA could only be explained as binding to the Sphingomonas glycosphingolipid membrane, binding to the cell wall, or nonspecific binding. Glycoconjugation of ConA and WGA with the target sugars glucose and N-acetylglucosamine, respectively, was used as a method for evaluation of the specificity of the lectins towards Sphingomonas biofilms and Sphingomonas polysaccharides. Our results show that the binding of lectins to biofilms does not necessarily prove the presence of specific target sugars in the extracellular polymeric substances (EPS) in biofilms. The lectins may bind to non-EPS targets or adhere nonspecifically to components of the biofilm matrix.

92 citations

Journal ArticleDOI
TL;DR: It is demonstrated that exposure to ferric chloride triggers rugose biofilm formation by the uropathogenic Escherichia coli strain UTI89 and by enteric bacteria Citrobacter koseri and Salmonella enterica serovar typhimurium.
Abstract: Bacterial biofilm formation is a complex developmental process involving cellular differentiation and the formation of intricate 3D structures. Here we demonstrate that exposure to ferric chloride triggers rugose biofilm formation by the uropathogenic Escherichia coli strain UTI89 and by enteric bacteria Citrobacter koseri and Salmonella enterica serovar typhimurium. Two unique and separable cellular populations emerge in iron-triggered, rugose biofilms. Bacteria at the air–biofilm interface express high levels of the biofilm regulator csgD, the cellulose activator adrA, and the curli subunit operon csgBAC. Bacteria in the interior of rugose biofilms express low levels of csgD and undetectable levels of matrix components curli and cellulose. Iron activation of rugose biofilms is linked to oxidative stress. Superoxide generation, either through addition of phenazine methosulfate or by deletion of sodA and sodB, stimulates rugose biofilm formation in the absence of high iron. Additionally, overexpression of Mn-superoxide dismutase, which can mitigate iron-derived reactive oxygen stress, decreases biofilm formation in a WT strain upon iron exposure. Not only does reactive oxygen stress promote rugose biofilm formation, but bacteria in the rugose biofilms display increased resistance to H2O2 toxicity. Altogether, we demonstrate that iron and superoxide stress trigger rugose biofilm formation in UTI89. Rugose biofilm development involves the elaboration of two distinct bacterial populations and increased resistance to oxidative stress.

92 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
85% related
Virulence
35.9K papers, 1.3M citations
83% related
Plasmid
44.3K papers, 1.9M citations
82% related
Mutant
74.5K papers, 3.4M citations
79% related
Membrane protein
30.2K papers, 1.7M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20224
2021138
2020189
2019157
2018121
2017113