scispace - formally typeset
Search or ask a question
Topic

Biofilm matrix

About: Biofilm matrix is a research topic. Over the lifetime, 1589 publications have been published within this topic receiving 110140 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Bacteriophage may play an important role in the control of attachment and biofilm formation by Campylobacter in situations where biofilms occur in nature, and they have the potential for application in industrial situations leading to improvements in food safety.
Abstract: Bacteria in their natural environments frequently exist as mixed surface-associated communities, protected by extracellular material, termed biofilms. Biofilms formed by the human pathogen Campylobacter jejuni may arise in the gastrointestinal tract of animals but also in water pipes and other industrial situations, leading to their possible transmission into the human food chain either directly or via farm animals. Bacteriophages are natural predators of bacteria that usually kill their prey by cell lysis and have potential application for the biocontrol and dispersal of target bacteria in biofilms. The effects of virulent Campylobacter specific-bacteriophages CP8 and CP30 on C. jejuni biofilms formed on glass by strains NCTC 11168 and PT14 at 37°C under microaerobic conditions were investigated. Independent bacteriophage treatments (n ≥ 3) led to 1 to 3 log₁₀ CFU/cm² reductions in the viable count 24 h postinfection compared with control levels. In contrast, bacteriophages applied under these conditions effected a reduction of less than 1 log₁₀ CFU/ml in planktonic cells. Resistance to bacteriophage in bacteria surviving bacteriophage treatment of C. jejuni NCTC 11168 biofilms was 84% and 90% for CP8 and CP30, respectively, whereas bacteriophage resistance was not found in similarly recovered C. jejuni PT14 cells. Dispersal of the biofilm matrix by bacteriophage was demonstrated by crystal violet staining and transmission electron microscopy. Bacteriophage may play an important role in the control of attachment and biofilm formation by Campylobacter in situations where biofilms occur in nature, and they have the potential for application in industrial situations leading to improvements in food safety.

91 citations

Journal ArticleDOI
TL;DR: The results strongly suggest a dual mechanism for the wild-type biofilm penicillin G resistance, retarded penetration, and effective efflux.
Abstract: By using a high-throughput screening method, a mutant of a uropathogenic Escherichia coli strain affected in the rapA gene was isolated. The mutant formed normal-architecture biofilms but showed decreased penicillin G resistance, although the mutation did not affect planktonic cell resistance. Transcriptome analysis showed that 22 genes were down-regulated in the mutant biofilm. One of these genes was yhcQ, which encodes a putative multidrug resistance pump. Mutants with mutations in this gene also formed biofilms with decreased resistance, although the effect was less pronounced than that of the rapA mutation. Thus, an additional mechanism(s) controlled by a rapA-regulated gene(s) was involved in wild-type biofilm resistance. The search for this mechanism was guided by the fact that another down-regulated gene in rapA biofilms, yeeZ, is suspected to be involved in extra cell wall-related functions. A comparison of the biofilm matrix of the wild-type and rapA strains revealed decreased polysaccharide quantities and coverage in the mutant biofilms. Furthermore, the (fluorescent) functional penicillin G homologue Bocillin FL penetrated the mutant biofilms more readily. The results strongly suggest a dual mechanism for the wild-type biofilm penicillin G resistance, retarded penetration, and effective efflux. The results of studies with an E. coli K-12 strain pointed to the same conclusion. Since efflux and penetration can be general resistance mechanisms, tests were conducted with other antibiotics. The rapA biofilm was also more sensitive to norfloxacin, chloramphenicol, and gentamicin.

90 citations

Journal ArticleDOI
TL;DR: This work identified β-1,3 glucan in the matrix, found that the matrix sequesters antifungal drug, and enhanced antIFungal susceptibility with matrix β-2,2 glucan hydrolysis.
Abstract: Candida biofilm infections pose an increasing threat in the health care setting due to the drug resistance associated with this lifestyle. Several mechanisms underlie the resistance phenomenon. In Candida albicans, one mechanism involves drug impedance by the biofilm matrix linked to β-1,3 glucan. Here, we show this is important for other Candida spp. We identified β-1,3 glucan in the matrix, found that the matrix sequesters antifungal drug, and enhanced antifungal susceptibility with matrix β-1,3 glucan hydrolysis.

90 citations

Journal ArticleDOI
TL;DR: An overview of the biophysical and biological data for a wide range of protein fibers found in the biofilm matrix of Gram-positive and Gram-negative bacteria is provided.

90 citations

Journal ArticleDOI
TL;DR: Genes in the epsHIJK locus needed for biofilm formation encode proteins synthesizing the conserved bacterial polysaccharide poly-N-acetylglucosamine (PNAG).

90 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
85% related
Virulence
35.9K papers, 1.3M citations
83% related
Plasmid
44.3K papers, 1.9M citations
82% related
Mutant
74.5K papers, 3.4M citations
79% related
Membrane protein
30.2K papers, 1.7M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20224
2021138
2020189
2019157
2018121
2017113