scispace - formally typeset
Search or ask a question
Topic

Biofilm matrix

About: Biofilm matrix is a research topic. Over the lifetime, 1589 publications have been published within this topic receiving 110140 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that, in this acid stream, the trophic linkage between algae and grazers is maintained by ‘detritivorous’ stonefly and chironomid species.
Abstract: SUMMARY 1. Spatial and temporal variation in the distribution and feeding of non-predatory macroinvertebrates was investigated in a first-order, acid stream in the Ashdown Forest, southern England. 2. Stonefly (Nemouridae) and chironomid (Orthocladiinae) larvae were abundant on the upper surfaces of mineral substrata of three sizes (small stones, large stones, bedrock). The density of larvae in each taxonomic group did not vary among substrata of different sizes, although strong seasonal variation existed. 3. Nemourids and chironomids (H. marcidus) collected from the upper surfaces of substrata exhibited generalist feeding habits, consuming algae (diatoms, coccoid and filamentous green algae), detritus (biofilm matrix material and fine particulate organic matter (FPOM)) and inorganic debris. 4. There was spatial variation in the gut contents of nemourids. The proportion of algae in the guts of larvae often increased with the size of the substratum from which they were collected. Strong temporal variation in the composition of the diet also existed. Nemourids ingested a large quantity of attached algae and biofilm matrix from the biofilm in spring and winter, but consumed loose FPOM and associated microflora in summer and autumn. 5. We conclude that, in this acid stream, the trophic linkage between algae and grazers is maintained by ‘detritivorous’ stonefly and chironomid species. The relationship between the feeding habits of these larvae and other life-history attributes, such as mouthpart morphology and mobility, is discussed.

66 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of molecular size and charge on biofilm sorption of organic compounds selected for their similarity to the size and charges of aquatic natural organic matter (NOM).

66 citations

Journal ArticleDOI
TL;DR: The findings provide a mechanistic explanation for the reported extreme resistance of joint infection to antibiotic treatment, lend support to the notions that Agr functionality and PSM production play a major role in defining different forms of S. aureus infection, and have important implications for antistaphylococcal therapeutic strategies.
Abstract: Staphylococcus aureus is a leading cause of prosthetic joint infections, which, as we recently showed, proceed with the involvement of biofilm-like clusters that cause recalcitrance to antibiotic treatment. Here we analyzed why these clusters grow extraordinarily large, reaching macroscopically visible extensions (>1 mm). We found that while specific S. aureus surface proteins are a prerequisite for agglomeration in synovial fluid, low activity of the Agr regulatory system and subsequent low production of the phenol-soluble modulin (PSM) surfactant peptides cause agglomerates to grow to exceptional dimensions. Our results indicate that PSMs function by disrupting interactions of biofilm matrix molecules, such as the polysaccharide intercellular adhesin (PIA), with the bacterial cell surface. Together, our findings support a two-step model of staphylococcal prosthetic joint infection: As we previously reported, interaction of S. aureus surface proteins with host matrix proteins such as fibrin initiates agglomeration; our present results show that, thereafter, the bacterial agglomerates grow to extremely large sizes owing to the lack of PSM expression under the specific conditions present in joints. Our findings provide a mechanistic explanation for the reported extreme resistance of joint infection to antibiotic treatment, lend support to the notions that Agr functionality and PSM production play a major role in defining different forms of S. aureus infection, and have important implications for antistaphylococcal therapeutic strategies.

66 citations

Journal ArticleDOI
TL;DR: Biofilms are not inherently protected against the attack by phagocytic cells; their sensitivity, however, varies among bacterial strains, presumably due to properties of the extracellular biofilm matrix affecting the motility of PMN on the film.
Abstract: Bacteria organized in biofilms are a common cause of relapsing or persistent infections. In patients receiving orthopedic implants, such as endoprostheses or osteosynthesis materials, Staphylococcus aureus and S. epidermidis are prevalent and it is widely assumed that bacteria in biofilms are not only relatively resistant towards antibiotics and biocides, but also towards host defense mechanisms. In that context, we addressed the question how polymorphonuclear neutrophils (PMN), the "first line defense" against bacterial infection, interact with biofilms generated in vitro. By time-lapse video microscopy, we observed migration of PMN towards the biofilms. In the case of S. aureus, the PMN moved across the biofilm and took up bacteria as they moved along. On S. epidermidis, in contrast, the PMN were rather immobile, and phagocytosis was limited to bacteria in the immediate vicinity. By labeling the bacteria within the biofilm with H-thymidine we found that S. aureus biofilms were more sensitive towards the PMN attack than S. epidermidis. Following phagocytosis of either bacteria strain, the PMN underwent apoptosis, in line with the dogma, that phagocytosis induces programmed cell-death in order to prevent spilling of the bactericidal and cytotoxic entities. In conclusion, biofilms are not inherently protected against the attack by phagocytic cells; their sensitivity, however, varies among bacterial strains, presumably due to properties of the extracellular biofilm matrix affecting the motility of PMN on the film.

66 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used bioinformatic, genetic, transcriptomic, and metabonomic analyses to uncover syntrophic cooperation between inoculant (Bacillus velezensis SQR9) and plant-beneficial indigenous Pseudomonas stutzeri in the cucumber rhizosphere.
Abstract: Trophic interactions play a central role in driving microbial community assembly and function. In gut or soil ecosystems, successful inoculants are always facilitated by efficient colonization; however, the metabolite exchanges between inoculants and resident bacteria are rarely studied, particularly in the rhizosphere. Here, we used bioinformatic, genetic, transcriptomic, and metabonomic analyses to uncover syntrophic cooperation between inoculant (Bacillus velezensis SQR9) and plant-beneficial indigenous Pseudomonas stutzeri in the cucumber rhizosphere. We found that the synergistic interaction of these two species is highly environmental dependent, the emergence of syntrophic cooperation was only evident in a static nutrient-rich niche, such as pellicle biofilm in addition to the rhizosphere. Our results identified branched-chain amino acids (BCAAs) biosynthesis pathways are involved in syntrophic cooperation. Genome-scale metabolic modeling and metabolic profiling also demonstrated metabolic facilitation among the bacterial strains. In addition, biofilm matrix components from Bacillus were essential for the interaction. Importantly, the two-species consortium promoted plant growth and helped plants alleviate salt stress. In summary, we propose a mechanism in which synergic interactions between a biocontrol bacterium and a partner species promote plant health.

66 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
85% related
Virulence
35.9K papers, 1.3M citations
83% related
Plasmid
44.3K papers, 1.9M citations
82% related
Mutant
74.5K papers, 3.4M citations
79% related
Membrane protein
30.2K papers, 1.7M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20224
2021138
2020189
2019157
2018121
2017113