scispace - formally typeset
Search or ask a question
Topic

Biofilm matrix

About: Biofilm matrix is a research topic. Over the lifetime, 1589 publications have been published within this topic receiving 110140 citations.


Papers
More filters
01 Jan 2007
TL;DR: In the present chapter the presence of cell-to-cell interconnecting matrices appears to be a common feature of structured microbial communities, but there is a remarkable diversity in the composition of these matrices.
Abstract: The extracellular matrix of structured microbial communities constitutes the framework that holds the component cells together. Although the presence of cell-to-cell interconnecting matrices appears to be a common feature of structured microbial communities, there is a remarkable diversity in the composition of these matrices. Compounds such as polysaccharides, fimbriae, mating pili, and extracellular DNA can all function as extracellular matrix components. In the present chapter we provide examples of the diversity of

58 citations

Journal ArticleDOI
TL;DR: Staphylococcus aureus biofilms established in milk were significantly reduced using RL at low concentrations and temperatures, suggesting potential application of RL in milk (dairy) processing industries where low temperatures are applied.

57 citations

Journal ArticleDOI
TL;DR: To characterize the expression of coaggregation between Blastomonas natatoria 2.1 and Micrococcus luteus following growth in liquid culture, on agar and in an artificial biofilm matrix composed of poloxamer hydrogel.
Abstract: A . H . R I C K A R D , P . G I L B E R T A N D P . S . H A N D L E Y . 2004. Aim: To characterize the expression of coaggregation between Blastomonas natatoria 2.1 and Micrococcus luteus 2AE13 following growth in liquid culture, on agar and in an artificial biofilm matrix composed of poloxamer hydrogel. Methods and Results: The ability of B. natatoria 2AE1 and M. luteus 2AE13 to coaggregate with one another was assessed following growth in liquid culture as colonies on agar or within a poloxamer hydrogel matrix. In all these environments a cycle of gain and loss of coaggregation occurred when the two cell types were aged simultaneously, with optimum expression occurring in early stationary phase. Blastomonas natatoria 2AE1 cells only coaggregated maximally after entry into stationary phase. Conversely, M. luteus 2AE13 cells only coaggregated in exponential phase and early stationary phase and coaggregation ability was lost in late stationary phase. Maximal coaggregation therefore only occurred between the two strains if both were in early stationary phase, when the surface properties of the two cell types were optimal for coaggregation. Conclusion: In addition to occurring between cells grown in liquid culture, coaggregation between aquatic bacteria occurs after growth as a biofilm on agar and in an artificial biofilm matrix in poloxamer. Under all conditions, the B. natatoria 2AE1 coaggregation adhesin and complementary receptor on M. luteus 2AE13 were only expressed simultaneously during early stationary phase.

57 citations

Journal ArticleDOI
TL;DR: These findings represent the bioactivity and potency of A. philippense crude extract against food pathogens not only in their planktonic forms but also against/in biofilms for the first time.
Abstract: Adiantum philippense (A. philippense), an ethnomedicinally important fern, has become an interesting herb in the search for novel bioactive metabolites, which can also be used as therapeutic agents. Primarily, in this study, A. philippense crude extract was screened for its phytochemical constituents, antagonistic potential, and effect on bacterial adhesion and biofilm formation against common food pathogens. Phytochemical profiling of A. philippense was carried out by using High Resolution-Liquid Chromatography and Mass Spectroscopy (HR-LCMS) followed by antibacterial activity via agar cup/well diffusion, broth microdilution susceptibility methods, and growth curve analysis. Antibiofilm potency and efficacy were assessed on the development, formation, and texture of biofilms through light microscopy, fluorescent microscopy, scanning electron microscopy, and the assessment of exopolysaccharide production. Correspondingly, a checkerboard test was performed to evaluate the combinatorial effect of A. philippense and chloramphenicol. Lastly, molecular docking studies of identified phytochemicals with adhesin proteins of tested food pathogens, which helps the bacteria in surface attachment and leads to biofilm formation, were assessed. A. philippense crude extract was found to be active against all tested food pathogens, displaying the rapid time-dependent kinetics of bacterial killing. A. philippense crude extract also impedes the biofilm matrix by reducing the total content of exopolysaccharide, and, likewise, the microscopic images revealed a great extent of disruption in the architecture of biofilms. A synergy was observed between A. philippense crude extract and chloramphenicol for E. coli, S. aureus, and P. aeruginosa, whereas an additive effect was observed for S. flexneri. Various bioactive phytochemicals were categorized from A. philippense crude extract using HR-LCMS. The molecular docking of these identified phytochemicals was interrelated with the active site residues of adhesin proteins, IcsA, Sortase A, OprD, EspA, and FimH from S. flexneri, S. aureus, P. aeruginosa, and E. coli, respectively. Thus, our findings represent the bioactivity and potency of A. philippense crude extract against food pathogens not only in their planktonic forms but also against/in biofilms for the first time. We have also correlated these findings with the possible mechanism of biofilm inhibition via targeting adhesin proteins, which could be explored further to design new bioactive compounds against biofilm producing foodborne bacterial pathogens.

57 citations

Journal ArticleDOI
TL;DR: The incorporation of DMADDM could modify the properties of GIC to influence the development of S. mutans biofilms and contribute to the better management of secondary caries.
Abstract: Dental restorative materials with antimicrobial properties can inhibit bacterial colonization, which may result in a reduction of caries at tooth-filling interaction zones. This study aimed to develop antibacterial glass-ionomer cements (GIC) containing a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM), and to investigate their effect on material performance and antibacterial properties. Different mass fractions (0, 1.1% and 2.2%) of DMADDM were incorporated into the GIC. The flexure strength, surface charge density, surface roughness and fluoride release were tested. A Streptococcus mutans biofilm model was used. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm matrix. In addition, biofilm metabolic activity, lactic acid metabolism and the expression of glucosyltransferase genes gtfB, gtfC and gtfD were measured. GIC containing 1.1% and 2.2% DMADDM had flexural strengths matching those of the commercial control (P>0.1). DMADDM was able to increase the surface charge density but reduced surface roughness (P<0.05). The incorporation of 1.1% and 2.2% DMADDM elevated the release of fluoride by the GIC in the first 2 days (P<0.05). The novel DMADDM-modified GIC significantly reduced biofilm metabolic activity (P<0.05) and decreased lactic acid production (P<0.05). The quantitative polymerase chain reaction (qPCR) results showed that the expression of gtfB, gtfC and gtfD decreased when mass fractions of DMADDM increased (P<0.05). EPS staining showed that both the bacteria and EPS in biofilm decreased in the DMADDM groups. The incorporation of DMADDM could modify the properties of GIC to influence the development of S. mutans biofilms. In this study, we investigated the interface properties of antibacterial materials for the first time. GIC containing DMADDM can improve material performance and antibacterial properties and may contribute to the better management of secondary caries.

57 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
85% related
Virulence
35.9K papers, 1.3M citations
83% related
Plasmid
44.3K papers, 1.9M citations
82% related
Mutant
74.5K papers, 3.4M citations
79% related
Membrane protein
30.2K papers, 1.7M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20224
2021138
2020189
2019157
2018121
2017113