scispace - formally typeset
Search or ask a question
Topic

Biogas

About: Biogas is a research topic. Over the lifetime, 28571 publications have been published within this topic receiving 498545 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A scheme of a combined process of farm unit size is proposed; this includes anaerobic digestion of organic agricultural wastes, production and combustion of biogas, and utilization of flue gas for production of microalgal biomass, which could be used in animal feeds.
Abstract: Flue gas generated by combustion of natural gas in a boiler was used for outdoor cultivation of Chlorella sp. in a 55 m2 culture area photobioreactor. A 6 mm thick layer of algal suspension continuously running down the inclined lanes of the bioreactor at 50 cm s−1 was exposed to sunlight. Flue gas containing 6–8% by volume of CO2 substituted for more costly pure CO2 as a source of carbon for autotrophic growth of algae. The degree of CO2 mitigation (flue gas decarbonization) in the algal suspension was 10–50% and decreased with increasing flue gas injection rate into the culture. A dissolved CO2 partial pressure (pCO2) higher than 0.1 kPa was maintained in the suspension at the end of the 50 m long culture area in order to prevent limitation of algal growth by CO2. NO X and CO gases (up to 45 mg m−3 NO X and 3 mg m−3 CO in flue gas) had no negative influence on the growth of the alga. On summer days the following daily net productivities of algae [g (dry weight) m−2] were attained in comparative parallel cultures: flue gas = 19.4–22.8; pure CO2 = 19.1–22.6. Net utilization (η) of the photosynthetically active radiant (PAR) energy was: flue gas = 5.58–6.94%; pure CO2 = 5.49–6.88%. The mass balance of CO2 obtained for the flue gas stream and for the algal suspension was included in a mathematical model, which permitted the calculation of optimum flue gas injection rate into the photobioreactor, dependent on the time course of irradiance and culture temperature. It was estimated that about 50% of flue gas decarbonization can be attained in the photobioreactor and 4.4 kg of CO2 is needed for production of 1 kg (dry weight) algal biomass. A scheme of a combined process of farm unit size is proposed; this includes anaerobic digestion of organic agricultural wastes, production and combustion of biogas, and utilization of flue gas for production of microalgal biomass, which could be used in animal feeds. A preliminary quantitative assessment of the microalgae production is presented.

478 citations

Journal ArticleDOI
TL;DR: In this article, the authors systematically review the state of the art of biogas upgrading technologies with upgrading efficiency, methane (CH 4 ) loss, environmental effect, development and commercialization, and challenges in terms of energy consumption and economic assessment.

477 citations

Journal ArticleDOI
TL;DR: Experimental results obtained emphasize that the response of metabolites was a more useful indicator than hydrogenic activity for obtaining efficient hydrogen production, and expressions of contour plots indicate that Response‐Surface Methodology may provide easily interpretable advice on the operation of a hydrogen‐producing bioprocess.
Abstract: The pH and hydraulic retention time (HRT) of a chemostat reactor were varied according to a central composite design methodology with the aim of modeling and optimizing the conversion of starch into hydrogen by microorganisms in an anaerobic digested sludge. Experimental results from 23 runs indicate that a maximum hydrogen production rate of 1600 L/m(3)/d under the organic loading rate of 6 kg starch m(3)/d obtained at pH = 5.2 and HRT = 17 h. Throughout this study, the hydrogen percentage in the biogas was approximately 60% and no methanogenesis was observed. while the reactor was operated with HRT of 17 h, hydrogen was produced within a pH range between 4.7 and 5.7. Alcohol production rate was greater than hydrogen production rate if the pH was lower than 4.3 or higher than 6.1. Supplementary experiments confirm that the optimum conditions evaluated in this study were highly reliable; while a hydrogen production yield of 1.29 l H(2)/g starch-COD was obtained. An examination of the response surfaces, including hydrogen, volatile fatty acids (VFA) and alcohols production, led us to the belief that clostridium sp. predominated in the anaerobic hydrogen-producing microorganisms in this study. Experiment results obtained emphasize that the response of metabolites was a more useful indicator than hydrogenic activity for obtaining efficient hydrogen production. Furthermore, expressions of contour plots indicate that Response-Surface Methodology may provide easily interpretable advice on the operation of a hydrogen-producing bioprocess.

475 citations

Journal ArticleDOI
TL;DR: This work presents a review of the existing status and advances in biological and physico-chemical methods applied to the treatment of molasses-based distillery wastewater and limitations in the existing processes have been summarized.

473 citations

Journal ArticleDOI
TL;DR: This review critically presents and discusses the state of the art of biogas upgrading technologies with special emphasis on biotechnologies for CO2, H2S, siloxane and halocarbon removal.
Abstract: The lack of tax incentives for biomethane use requires the optimization of both biogas production and upgrading in order to allow the full exploitation of this renewable energy source. The large number of biomethane contaminants present in biogas (CO2, H2S, H2O, N2, O2, methyl siloxanes, halocarbons) has resulted in complex sequences of upgrading processes based on conventional physical/chemical technologies capable of providing CH4 purities of 88–98 % and H2S, halocarbons and methyl siloxane removals >99 %. Unfortunately, the high consumption of energy and chemicals limits nowadays the environmental and economic sustainability of conventional biogas upgrading technologies. In this context, biotechnologies can offer a low cost and environmentally friendly alternative to physical/chemical biogas upgrading. Thus, biotechnologies such as H2-based chemoautrophic CO2 bioconversion to CH4, microalgae-based CO2 fixation, enzymatic CO2 dissolution, fermentative CO2 reduction and digestion with in situ CO2 desorption have consistently shown CO2 removals of 80–100 % and CH4 purities of 88–100 %, while allowing the conversion of CO2 into valuable bio-products and even a simultaneous H2S removal. Likewise, H2S removals >99 % are typically reported in aerobic and anoxic biotrickling filters, algal-bacterial photobioreactors and digesters under microaerophilic conditions. Even, methyl siloxanes and halocarbons are potentially subject to aerobic and anaerobic biodegradation. However, despite these promising results, most biotechnologies still require further optimization and scale-up in order to compete with their physical/chemical counterparts. This review critically presents and discusses the state of the art of biogas upgrading technologies with special emphasis on biotechnologies for CO2, H2S, siloxane and halocarbon removal.

464 citations


Network Information
Related Topics (5)
Biomass
57.2K papers, 1.4M citations
88% related
Renewable energy
87.6K papers, 1.6M citations
86% related
Wind power
99K papers, 1.5M citations
78% related
Organic matter
45.5K papers, 1.6M citations
77% related
Combustion
172.3K papers, 1.9M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,542
20223,366
20211,883
20202,203
20192,237
20182,221