scispace - formally typeset
Search or ask a question
Topic

Biogas

About: Biogas is a research topic. Over the lifetime, 28571 publications have been published within this topic receiving 498545 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The effect of inoculum acclimation on methane production from mesophilic digestion of microwave pretreated of thickened waste activated sludge (TWAS) was investigated in this paper, where the authors found that despite mild acute inhibition in the first 9 d, acclimated inoculum digesting sludge, irradiated to 175°C produced 31 ± 6% higher biogas compared to control after 18 d of digestion.

120 citations

Journal ArticleDOI
TL;DR: Different mixtures of animal byproducts, other slaughterhouse waste, food waste, and liquid manure were codigested at mesophilic conditions (37°C) at laboratory and pilot scale to evaluate biogas potential from waste generated during slaughter of animals.
Abstract: Different mixtures of animal byproducts, other slaughterhouse waste (i.e., rumen, stomach and intestinal content), food waste, and liquid manure were codigested at mesophilic conditions (37°C) at laboratory and pilot scale. Animal byproducts, including blood, represent 70–80% of the total biogas potential from waste generated during slaughter of animals. The total biogas potential from waste generated during slaughter is about 1300 MJ/cattle and about 140 MI/pig. Fed-batch digestion of pasteurized (70°C, 1h) animal byproducts resulted in a fourfold increase in biogas yield (1.14L/g of volatile solids [VS]) compared with nonpasteurized animal bypproducts (0.31L/g of VS). Mixtures with animal byproducts representing 19–38% of the total dry matter were digested in continuous-flow stirred tank reactors at laboratory and pilot scale. Stable processes at organic loading rates (OLRs) exceeding 2.5g of VS/(L·d) and hydraulic retention times (HRTs) less than 40 d could be obtained with total ammonia nitrogen concentrations (NH4−N+NH3−N) in the range of 4.0–5.0 g/L. After operating one process for more than 1.5 yr at total ammonia nitrogen concentrations >4 g/L, an increase in OLR to 5 g of VS/(L·d) and a decrease in HRT to 22 d was possible without accumulation of volatile fatty acids.

120 citations

Journal ArticleDOI
TL;DR: An established biogas plant was followed over the course of more than 2 years via polymerase chain reaction–denaturing gradient gel electrophoresis of 16S rRNA genes and subsequent sequencing, and the bacterial and the archaeal community remained stable over the investigation.
Abstract: Biogas plants continuously convert biological wastes mainly into a mixture of methane, CO2 and H2O—a conversion that is carried out by a consortium of bacteria and archaea. Especially in the municipal plants dedicated towards waste treatment, the reactor feed may vary considerably, exposing the resident microbiota to a changing variety of substrates. To evaluate how and if such changes influence the microbiology, an established biogas plant (6,600 m3, up to 600 m3 biogas per h) was followed over the course of more than 2 years via polymerase chain reaction–denaturing gradient gel electrophoresis of 16S rRNA genes and subsequent sequencing. Both the bacterial and the archaeal community remained stable over the investigation. Of the bacterial consortium, about half of the sequences were in decreasing order of occurrence: Thermoacetogenium sp., Anaerobaculum mobile, Clostridium ultunense, Petrotoga sp., Lactobacillus hammesii, Butyrivibrio sp., Syntrophococcus sucromutans, Olsenella sp., Tepidanaerobacter sp., Sporanaerobacter acetigenes, Pseudoramibacter alactolyticus, Lactobacillus fuchuensis or Lactobacillus sakei, Lactobacillus parabrevis or Lactobacillus spicheri and Enterococcus faecalis. The other half matched closely to ones from similar habitats (thermophilic anaerobic methanogenic digestion). The archaea consisted of Methanobrevibacter sp., Methanoculleus bourgensis, Methanosphaera stadtmanae, Methanimicrococcus blatticola and uncultured Methanomicrobiales. The role of these species in methane production is discussed.

120 citations

Journal ArticleDOI
TL;DR: The simulative results indicate that the leachate recycle for the LFBR resulted in a more rapid methane production from the consumption of the carbohydrate but in less rapid production from that of the protein and lipid.
Abstract: A mathematical model for the development of methane production from a landfill bioreactor (LFBR) treating the organic fraction of municipal solid wastes was developed from the Gompertz equation. The model incorporates three biokinetic parameters: methane production lag phase time, rate, and potential. The methane converting capacity test experiment was conducted to monitor the specific methane production rate consuming anaerobic fermentative intermediates, including carbohydrates, proteins, and lipids. The model developed in this study can be used to predict methane production based on the chemical nature and the decomposition characteristics of the organic fraction of municipal solid wastes. The simulative results indicate that the leachate recycle for the LFBR resulted in a more rapid methane production from the consumption of the carbohydrate but in less rapid production from that of the protein and lipid. Moreover, the same specific methane production rate of 2.6 mL/g volatile solid (VS) per day occurred at the LFBR with/without leachate recycle; however, a sharp drop in methane production lag phase time, from 125 to 25 days, was obtained at the LFBR incubated with leachate recycle.

120 citations

Journal ArticleDOI
TL;DR: In this article, an upflow sludge blanket (UASB) and an anaerobic packed-bed (APB) were used to treat leachate from potato waste.

120 citations


Network Information
Related Topics (5)
Biomass
57.2K papers, 1.4M citations
88% related
Renewable energy
87.6K papers, 1.6M citations
86% related
Wind power
99K papers, 1.5M citations
78% related
Organic matter
45.5K papers, 1.6M citations
77% related
Combustion
172.3K papers, 1.9M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,542
20223,366
20211,883
20202,203
20192,237
20182,221