scispace - formally typeset
Search or ask a question
Topic

Biogas

About: Biogas is a research topic. Over the lifetime, 28571 publications have been published within this topic receiving 498545 citations.


Papers
More filters
Journal ArticleDOI
Jia Lin1, Jiane Zuo1, Lili Gan1, Peng Li1, Fenglin Liu1, Kaijun Wang1, Lei Chen1, Hainan Gan1 
TL;DR: The biochemical methane potentials for typical fruit and vegetable waste (FVW) and food waste (FW) from a northern China city were investigated and the performance and operation of the digester were maintained stable, with no accumulation of volatile fatty acids (VFA) and ammonia.
Abstract: The biochemical methane potentials for typical fruit and vegetable waste (FVW) and food waste (FW) from a northern China city were investigated, which were 0.30, 0.56 m3 CH4/kgVS (volatile solids) with biodegradabilities of 59.3% and 83.6%, respectively. Individual anaerobic digestion testes of FVW and FW we re conducted at the organic loading rate (OLR) of 3 k g VS/(m3.day) using a lab-scale continuous stirred-tank reactor at 350C. FVW could b e digested stably with the biogas production rate of 2.17 m3/(m3 .day)and methane production yield of 0.42 m3 CH4/kg VS. However, anaerobic digestion process for FW was failed due to acids accumulation. The effects of FVW: FW ratio on co-digestion stability and performance were further investigated at the same OLR. At FVW and FW mixing ratios of 2:1 and 1:1, the performance and operation of the digester were maintained stable, with no accumulation of volatile fatty acids (VFA) and ammonia. Changing the feed to a higher FW content in a ratio of FVW to FW 1:2, resulted in an increase inVFAs concentration to 1100-1200 mg/L, and the methanogenesis was slightly inhibited. At the optimum mixture ratio 1:1 for co-digestion of FVW with FW, the methane production yield was 0.49 m3 CH4/kg VS, and the volatile solids and soluble chemical oxygen demand (sCOD) removal efficiencies were 74.9% and 96.1%, respectively.

261 citations

Journal ArticleDOI
TL;DR: Main performance indicators are biogas and methane yield, degradation of volatile solids (VS), higher loading, and process stability with a short retention time.
Abstract: This article reviews the potential of anaerobic digestion (AD) for biogas production from livestock manure wastes and compares the operating and performance data for various anaerobic process configurations. It examines different kinds of manure waste treatment techniques and the influence of several parameters on biogas and methane yield. The comparison indicates that a variety of different operational conditions, various reactor configurations such as batch reactors, continuously stirred tank reactor (CSTR), plug flow reactor (PFR), up-flow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), temperature phased anaerobic digestion (TPAD), and continuous one- and two-stage systems, present a suitable technology for the AD of livestock manure waste. Main performance indicators are biogas and methane yield, degradation of volatile solids (VS), higher loading, and process stability with a short retention time.

261 citations

Journal ArticleDOI
TL;DR: In this article, the effects of a thermal hydrolysis process (THP) on the solubilization of main organics of sludge, as well as the performance of the followed biochemical methane potential (BMP) tests under mesophilic condition (35°C), were systematically evaluated.

260 citations

Journal ArticleDOI
TL;DR: Investigation of the biological hydrogen production potential of individual organic fraction of municipal solid wastes by batch experiments found carbohydrate produced the most hydrogen through biological hydrogen fermentation compared with proteins or lipids.

260 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the most interesting results achieved through such studies, mainly focusing on the following three aspects: (1) the analysis of the organic substrates typically co-digested to exploit their complementary characteristics; (2) the need of pre-treating the substrates before their digestion in order to change their physical and/or chemical characteristics; and (3) the usefulness of mathematical models simulating the anaerobic codigestion process.
Abstract: Over the last years anaerobic digestion has been successfully established as technology to treat organic wastes. The perspective of turning, through a low-cost process, organic wastes into biogas, a source of renewable energy and profit, has certainly increased the interest around this technology and has required several studies aimed to develop methods that could improve the performance as well as the efficiency of this process. The present work reviews the most interesting results achieved through such studies, mainly focusing on the following three aspects: (1) the analysis of the organic substrates typically co-digested to exploit their complementary characteristics; (2) the need of pre-treating the substrates before their digestion in order to change their physical and/or chemical characteristics; (3) the usefulness of mathematical models simulating the anaerobic co-digestion process. In particular these studies have demonstrated that combining different organic wastes results in a substrate better balanced and assorted in terms of nutrients, pre-treatments make organic solids more accessible and degradable to microorganisms, whereas mathematical models are extremely useful to predict the co-digestion process performance and therefore can be successfully used to choose the best substrates to mix as well as the most suitable pre-treatments to be applied.

260 citations


Network Information
Related Topics (5)
Biomass
57.2K papers, 1.4M citations
88% related
Renewable energy
87.6K papers, 1.6M citations
86% related
Wind power
99K papers, 1.5M citations
78% related
Organic matter
45.5K papers, 1.6M citations
77% related
Combustion
172.3K papers, 1.9M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,542
20223,366
20211,883
20202,203
20192,237
20182,221