scispace - formally typeset
Search or ask a question
Topic

Biogenesis

About: Biogenesis is a research topic. Over the lifetime, 2708 publications have been published within this topic receiving 140775 citations. The topic is also known as: Biogenesis.


Papers
More filters
01 Jan 2014
TL;DR: The definition of exosomes and other secreted extracellular vesicles, which mediating intercellular communication between different cell types in the body, and thus affecting normal and pathological conditions are focused on.
Abstract: In the 1980s, exosomes were described as vesicles of endosomal origin secreted from reticulocytes. Interest increased around these extracellular vesicles, as they appeared to participate in several cellular processes. Exosomes bear proteins, lipids, and RNAs, mediating intercellular communication between different cell types in the body, and thus affecting normal and pathological conditions. Only recently, scientists acknowledged the difficulty of separating exosomes from other types of extracellular vesicles, which precludes a clear attribution of a particular function to the different types of secreted vesicles. To shed light into this complex but expanding field of science, this review focuses on the definition of exosomes and other secreted extracellular vesicles. Their biogenesis, their secretion, and their subsequent fate are discussed, as their functions rely on these important processes.

3,321 citations

Journal ArticleDOI
17 Jun 2011-Science
TL;DR: A mitogen-activated protein kinase–dependent mechanism regulates autophagy by controlling the biogenesis and partnership of two distinct cellular organelles during starvation.
Abstract: Autophagy is a cellular catabolic process that relies on the cooperation of autophagosomes and lysosomes. During starvation, the cell expands both compartments to enhance degradation processes. We found that starvation activates a transcriptional program that controls major steps of the autophagic pathway, including autophagosome formation, autophagosome-lysosome fusion, and substrate degradation. The transcription factor EB (TFEB), a master gene for lysosomal biogenesis, coordinated this program by driving expression of autophagy and lysosomal genes. Nuclear localization and activity of TFEB were regulated by serine phosphorylation mediated by the extracellular signal-regulated kinase 2, whose activity was tuned by the levels of extracellular nutrients. Thus, a mitogen-activated protein kinase-dependent mechanism regulates autophagy by controlling the biogenesis and partnership of two distinct cellular organelles.

2,409 citations

Journal ArticleDOI
22 Apr 2005-Cell
TL;DR: Data support a model in which miRNA-guided formation of a 5' or 3' terminus within pre-ta-siRNA transcripts, followed by RDR6-dependent formation of dsRNA and Dicer-like processing, yields phased ta-siRNAs that negatively regulate other genes.

2,124 citations

Journal ArticleDOI
24 Jul 2009-Science
TL;DR: It is found that most lysosomal genes exhibit coordinated transcriptional behavior and are regulated by the transcription factor EB (TFEB), providing a potential therapeutic target to enhance cellular clearing in lysOSomal storage disorders and neurodegenerative diseases.
Abstract: Lysosomes are organelles central to degradation and recycling processes in animal cells. Whether lysosomal activity is coordinated to respond to cellular needs remains unclear. We found that most lysosomal genes exhibit coordinated transcriptional behavior and are regulated by the transcription factor EB (TFEB). Under aberrant lysosomal storage conditions, TFEB translocated from the cytoplasm to the nucleus, resulting in the activation of its target genes. TFEB overexpression in cultured cells induced lysosomal biogenesis and increased the degradation of complex molecules, such as glycosaminoglycans and the pathogenic protein that causes Huntington's disease. Thus, a genetic program controls lysosomal biogenesis and function, providing a potential therapeutic target to enhance cellular clearing in lysosomal storage disorders and neurodegenerative diseases.

1,928 citations

Journal ArticleDOI
TL;DR: The importance of lysosomal trafficking pathways is emphasized by recent findings that reveal new roles for lysOSomal membrane proteins in cellular physiology and in an increasing number of diseases that are characterized by defects inLysosome biogenesis.
Abstract: Lysosomes are the primary catabolic compartments of eukaryotic cells. They degrade extracellular material that has been internalized by endocytosis and intracellular components that have been sequestered by autophagy. In addition, specialized cells contain lysosome-related organelles that store and secrete proteins for cell-type-specific functions. The functioning of a healthy cell is dependent on the proper targeting of newly synthesized lysosomal proteins. Accumulating evidence suggests that there are multiple lysosomal delivery pathways that together allow the regulated and sequential deposition of lysosomal components. The importance of lysosomal trafficking pathways is emphasized by recent findings that reveal new roles for lysosomal membrane proteins in cellular physiology and in an increasing number of diseases that are characterized by defects in lysosome biogenesis.

1,342 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
90% related
RNA
111.6K papers, 5.4M citations
90% related
Transcription factor
82.8K papers, 5.4M citations
90% related
Signal transduction
122.6K papers, 8.2M citations
88% related
Peptide sequence
84.1K papers, 4.3M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
2023647
20221,094
2021167
2020179
2019144