scispace - formally typeset
Topic

Biological network

About: Biological network is a(n) research topic. Over the lifetime, 5125 publication(s) have been published within this topic receiving 244794 citation(s).
Papers
More filters

Journal ArticleDOI
15 Oct 1999-Science
TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Abstract: Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.

30,921 citations


Journal ArticleDOI
01 Jan 2003-Siam Review
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Abstract: Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.

16,520 citations


Journal ArticleDOI
TL;DR: This article proposes a method for detecting communities, built around the idea of using centrality indices to find community boundaries, and tests it on computer-generated and real-world graphs whose community structure is already known and finds that the method detects this known structure with high sensitivity and reliability.
Abstract: A number of recent studies have focused on the statistical properties of networked systems such as social networks and the Worldwide Web. Researchers have concentrated particularly on a few properties that seem to be common to many networks: the small-world property, power-law degree distributions, and network transitivity. In this article, we highlight another property that is found in many networks, the property of community structure, in which network nodes are joined together in tightly knit groups, between which there are only looser connections. We propose a method for detecting such communities, built around the idea of using centrality indices to find community boundaries. We test our method on computer-generated and real-world graphs whose community structure is already known and find that the method detects this known structure with high sensitivity and reliability. We also apply the method to two networks whose community structure is not well known—a collaboration network and a food web—and find that it detects significant and informative community divisions in both cases.

12,930 citations


Book
25 Mar 2010-
TL;DR: This book brings together for the first time the most important breakthroughs in each of these fields and presents them in a coherent fashion, highlighting the strong interconnections between work in different areas.
Abstract: The scientific study of networks, including computer networks, social networks, and biological networks, has received an enormous amount of interest in the last few years. The rise of the Internet and the wide availability of inexpensive computers have made it possible to gather and analyze network data on a large scale, and the development of a variety of new theoretical tools has allowed us to extract new knowledge from many different kinds of networks.The study of networks is broadly interdisciplinary and important developments have occurred in many fields, including mathematics, physics, computer and information sciences, biology, and the social sciences. This book brings together for the first time the most important breakthroughs in each of these fields and presents them in a coherent fashion, highlighting the strong interconnections between work in different areas. Subjects covered include the measurement and structure of networks in many branches of science, methods for analyzing network data, including methods developed in physics, statistics, and sociology, the fundamentals of graph theory, computer algorithms, and spectral methods, mathematical models of networks, including random graph models and generative models, and theories of dynamical processes taking place on networks.

10,033 citations


Journal ArticleDOI
03 May 2001-Nature
TL;DR: It is demonstrated that the phenotypic consequence of a single gene deletion in the yeast Saccharomyces cerevisiae is affected to a large extent by the topological position of its protein product in the complex hierarchical web of molecular interactions.
Abstract: The most highly connected proteins in the cell are the most important for its survival. Proteins are traditionally identified on the basis of their individual actions as catalysts, signalling molecules, or building blocks in cells and microorganisms. But our post-genomic view is expanding the protein's role into an element in a network of protein–protein interactions as well, in which it has a contextual or cellular function within functional modules1,2. Here we provide quantitative support for this idea by demonstrating that the phenotypic consequence of a single gene deletion in the yeast Saccharomyces cerevisiae is affected to a large extent by the topological position of its protein product in the complex hierarchical web of molecular interactions.

4,800 citations


Network Information
Related Topics (5)
Gene regulatory network

8.9K papers, 345.5K citations

89% related
Interaction network

2.7K papers, 113.3K citations

89% related
Systems biology

7.3K papers, 261.7K citations

88% related
Gene prediction

1.5K papers, 103.9K citations

88% related
Metabolic network

2.9K papers, 146.1K citations

86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202210
2021268
2020351
2019322
2018310
2017322

Top Attributes

Show by:

Topic's top 5 most impactful authors

Tijana Milenkovic

28 papers, 1.6K citations

Falk Schreiber

26 papers, 1.7K citations

Tamer Kahveci

26 papers, 175 citations

Jianxin Wang

18 papers, 820 citations

Nataša Pržulj

17 papers, 1.8K citations