scispace - formally typeset
Search or ask a question
Topic

Bioprocess

About: Bioprocess is a research topic. Over the lifetime, 2219 publications have been published within this topic receiving 50972 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors consider the use of plasmid DNA (pDNA) in the preparation for and protection against pandemics, using affinity chromatography and nasal inhalation.
Abstract: DNA may take a leading role in a future generation of blockbuster therapeutics. DNA has inherent advantages over other biomolecules such as protein, RNA and virus-like particles including safety, production simplicity and higher stability at ambient temperatures. Vaccination is the principal measure for preventing influenza and reducing the impact of pandemics; however, vaccines take up to 8-9 months to produce, and the global production capacity is woefully low. With production times as short as 2 weeks, improved safety and stability, bioprocess engineering developments, and the ability to perform numerous therapeutic roles, DNA has the potential to meet the demands of emerging and existing diseases. DNA is experiencing sharp growths in demand as indicated by its use in gene therapy trials and DNA vaccine related patents. Of particular interest for therapeutic use is plasmid DNA (pDNA), a form of non-genomic DNA that makes use of cellular machinery to express proteins or antigens. The production stages of fermentation and downstream purification are considered in this article. Forward looking approaches to purifying and delivering DNA are reported, including affinity chromatography and nasal inhalation. The place that pDNA may take in the preparation for and protection against pandemics is considered. If DNA therapeutics and vaccines prove to be effective, the ultimate scale of production will be huge which shall require associated bioprocess engineering research and development for purification of this large, unique biomolecule.

25 citations

Journal ArticleDOI
TL;DR: In this article , the authors provide an in-depth analysis of bioprocess technologies needed for cell-based meat production and challenges in reaching commercial scale and explore innovations to make cultured meat a viable protein alternative across numerous key performance indicators and for specific applications where traditional livestock is not an option.

25 citations

Journal ArticleDOI
TL;DR: Bioprocess optimization, in parallel with metabolic engineering refinements, will play a substantial role in developing a bioengineered heparin to replace the current animal-derived drug.
Abstract: Heparin is the most widely used anticoagulant drug in the world today. Heparin is currently produced from animal tissues, primarily porcine intestines. A recent contamination crisis motivated development of a non-animal-derived source of this critical drug. We hypothesized that Chinese hamster ovary (CHO) cells could be metabolically engineered to produce a bioengineered heparin, equivalent to current pharmaceutical heparin. We previously engineered CHO-S cells to overexpress two exogenous enzymes from the heparin/heparan sulfate biosynthetic pathway, increasing the anticoagulant activity ∼100-fold and the heparin/heparan sulfate yield ∼10-fold. Here, we explored the effects of bioprocess parameters on the yield and anticoagulant activity of the bioengineered GAGs. Fed-batch shaker-flask studies using a proprietary, chemically-defined feed, resulted in ∼two-fold increase in integrated viable cell density and a 70% increase in specific productivity, resulting in nearly three-fold increase in product titer. Transferring the process to a stirred-tank bioreactor increased the productivity further, yielding a final product concentration of ∼90 μg/mL. Unfortunately, the product composition still differs from pharmaceutical heparin, suggesting that additional metabolic engineering will be required. However, these studies clearly demonstrate bioprocess optimization, in parallel with metabolic engineering refinements, will play a substantial role in developing a bioengineered heparin to replace the current animal-derived drug.

25 citations

Journal ArticleDOI
TL;DR: Cell cultivation was optimized in fully controlled stirred tank bioreactor in batch and fed-batch culture to improve the process and to increase the anticancer EPS production.
Abstract: In the recent years, mushroom derived active metabolites have emerged as an important class of bioactive compounds with several therapeutic applications. Most of the production methods were based on cultivation of mushroom on solid substrate in controlled temperature green house. For the production of bioactive compounds for therapeutic application, production should be carried out under sterile and well controlled condition. Thus, the interest of cultivation of mushroom in bioreactors for bioactive compound production was increased during the last few years. In the present study, mushroom cells were cultivated in submerged culture for the overproduction of anticancer exo-polysaccharides (EPS). Cell cultivation was optimized in fully controlled stirred tank bioreactor in batch and fed-batch culture to improve the process and to increase the anticancer EPS production. In the first part of this study, significant improvement in EPS production was achieved upon transferring the process from shake flask to 15 L bioreactor. Further development in the process was conducted through optimization of some process parameters in bioreactor batch culture. In fed-batch culture, among different feeding strategies, optimized glucose feeding based on using the in-line data for oxygen and carbon dioxide obtained from out-gas analyzer was the best. The maximal yield of EPS obtained was 2.1 g L-1 in optimized fed-batch culture. The obtained EPS was almost two fold higher than those obtained in batch culture.

25 citations

Journal ArticleDOI
TL;DR: Process Analytical Technology (PAT) instruments include analyzers capable of measuring physical and chemical process parameters and key attributes with the goal of optimizing process controls as mentioned in this paper , and are designed to integrate within the pharmaceutical manufacturing line and is coupled with computing equipment to perform chemometric modeling for result interpretation and multilayer statistical control of processes.

25 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
83% related
Biofuel
23.8K papers, 902.4K citations
81% related
Anaerobic digestion
21.8K papers, 575K citations
79% related
Cellulase
16.1K papers, 479.5K citations
79% related
Yeast
31.7K papers, 868.9K citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023331
2022785
2021165
2020153
2019159
2018127