scispace - formally typeset
Search or ask a question
Topic

Bioprocess

About: Bioprocess is a research topic. Over the lifetime, 2219 publications have been published within this topic receiving 50972 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This review summarises recent studies that purposefully employed dynamic conditions, such as shifts, pulses, ramps and oscillations, for fast physiological strain characterisation and bioprocess development and demonstrates that dynamic operations can result in increased productivity and high product quality.
Abstract: In this review, we summarise recent studies that purposefully employed dynamic conditions, such as shifts, pulses, ramps and oscillations, for fast physiological strain characterisation and bioprocess development. We show the broad applicability of dynamic conditions and the various objectives that can thereby be investigated in a short time. Dynamic processes reveal information about the analysed system faster than traditional strategies, like continuous cultivations, as process parameters can directly be linked to platform and product parameters. Furthermore, we demonstrate that dynamic operations can result in increased productivity and high product quality, making this strategy a valuable tool for bioprocess development. With this review, we would like to encourage bioprocess engineers to an increased use of dynamic conditions in bioprocess development.

50 citations

Journal ArticleDOI
TL;DR: The aim was to develop a bioprocess for conversion of wastes of fish processing into single- cell oil and single-cell protein with parallel water reuse under the scope of a biorefinery.

50 citations

Journal ArticleDOI
TL;DR: The development and optimization of individual steps of the FASTEC bioprocess scheme are reviewed: scaling up cells to greater than 70 × 106 cells/mL and freezing in bags with an optimized controlled rate freezing protocol and using a customized rack configuration.
Abstract: Agility to schedule and execute cell culture manufacturing campaigns quickly in a multi-product facility will play a key role in meeting the growing demand for therapeutic proteins. In an effort to shorten campaign timelines, maximize plant flexibility and resource utilization, we investigated the initiation of cell culture manufacturing campaigns using CHO cells cryopreserved in large volume bags in place of the seed train process flows that are conventionally used in cell culture manufacturing. This approach, termed FASTEC (Frozen Accelerated Seed Train for Execution of a Campaign), involves cultivating cells to high density in a perfusion bioreactor, and cryopreserving cells in multiple disposable bags. Each run for a manufacturing campaign would then come from a thaw of one or more of these cryopreserved bags. This article reviews the development and optimization of individual steps of the FASTEC bioprocess scheme: scaling up cells to greater than 70 × 10(6) cells/mL and freezing in bags with an optimized controlled rate freezing protocol and using a customized rack configuration. Flow cytometry analysis was also employed to understand the recovery of CHO cells following cryopreservation. Extensive development data were gathered to ensure that the quantity and quality of the drug manufactured using the FASTEC bioprocess scheme was acceptable compared to the conventional seed train process flow. The result of offering comparable manufacturing options offers flexibility to the cell culture manufacturing network.

49 citations

Journal ArticleDOI
TL;DR: The recent development of approaches such as fuzzy logic, artificial neural network modeling, expert systems and genetic algorithms in the design and operation of biological processes is summarized and reviewed, especially focusing on the studies reported in biochemical engineering journals.

49 citations

Journal ArticleDOI
TL;DR: Results are presented showing how the feasible space for operation can be simulated and used both to address key design and operating decisions and to identify suitable trade-offs between operating variables, in order to achieve prespecified levels of process performance.
Abstract: This paper demonstrates a simple graphical approach for the design and analysis of a bioprocess flowsheet in which process interactions are significant. Results are presented showing how the feasible space for operation can be simulated and used both to address key design and operating decisions and to identify suitable trade-offs between operating variables, such as fermentation growth rate and disruption conditions, in order to achieve prespecified levels of process performance. Using verified models to describe the production and isolation of an intracellular protein alcohol dehydrogenase (ADH) in yeast as a test bed, a series of so-called 'windows of operation' are developed at growth rates in the range of 0.06-0.28 h-1 and for a range of overall process specifications. The effects of altering the process design performance specification as defined by the level of cell debris removal and the overall process productivity on the size and position of the feasible space were investigated to demonstrate the sensitivity of the flowsheet to changes in process objectives. Using the approach it has been possible to visualise the processing trade-offs required to increase performance in terms of the level of cell debris removal by 50% and the overall process productivity by 400% from a defined base level. The approach provides a convenient tool when designing integrated bioprocesses by enabling process options to be compared visually and can help in achieving better process designs and accelerating process development for the biological process industry.

49 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
83% related
Biofuel
23.8K papers, 902.4K citations
81% related
Anaerobic digestion
21.8K papers, 575K citations
79% related
Cellulase
16.1K papers, 479.5K citations
79% related
Yeast
31.7K papers, 868.9K citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023331
2022785
2021165
2020153
2019159
2018127