scispace - formally typeset
Search or ask a question
Topic

Bioprocess

About: Bioprocess is a research topic. Over the lifetime, 2219 publications have been published within this topic receiving 50972 citations.


Papers
More filters
Journal ArticleDOI
27 Mar 2017-mAbs
TL;DR: The reported LC-MS/MS workflow supports the development of bioprocesses with optimal HCP clearance and the production of safe and high quality therapeutic biopharmaceuticals.
Abstract: A modular and adaptive mass spectrometry (MS)-based platform was developed to provide fast, robust and sensitive host cell protein (HCP) analytics to support process development. This platform reli...

47 citations

Journal ArticleDOI
TL;DR: These findings provide the basis for the development of an economic and industrially relevant bioprocess and are the highest monoterpene concentrations obtained with a microorganism to date.
Abstract: Monoterpenes, such as the cyclic terpene limonene, are valuable and important natural products widely used in food, cosmetics, household chemicals, and pharmaceutical applications. The biotechnological production of limonene with microorganisms may complement traditional plant extraction methods. For this purpose, the bioprocess needs to be stable and ought to show high titers and space-time yields. In this study, a limonene production process was developed with metabolically engineered Escherichia coli at the bioreactor scale. Therefore, fed-batch fermentations in minimal medium and in the presence of a non-toxic organic phase were carried out with E. coli BL21 (DE3) pJBEI-6410 harboring the optimized genes for the mevalonate pathway and the limonene synthase from Mentha spicata on a single plasmid. The feasibility of glycerol as the sole carbon source for cell growth and limonene synthesis was examined, and it was applied in an optimized fermentation setup. Titers on a gram-scale of up to 7.3 g·Lorg-1 (corresponding to 3.6 g·L-1 in the aqueous production phase) were achieved with industrially viable space-time yields of 0.15 g·L-1·h-1. These are the highest monoterpene concentrations obtained with a microorganism to date, and these findings provide the basis for the development of an economic and industrially relevant bioprocess.

47 citations

Journal ArticleDOI
TL;DR: This work aims to advance the development of a computational framework to accelerate bioprocess scale-up by highlighting challenges associated with both establishing predictive metabolic models and CFD coupling and providing possible solutions.

47 citations

Journal ArticleDOI
TL;DR: This study demonstrates that thermophilic anaerobes are capable of producing ethanol at high yield and at titers greater than 60 g/L from purified substrates, but additional work is needed to produce the same ethanol titers from pre-treated hardwood.
Abstract: The thermophilic, anaerobic bacterium Thermoanaerobacterium saccharolyticum digests hemicellulose and utilizes the major sugars present in biomass. It was previously engineered to produce ethanol at yields equivalent to yeast. While saccharolytic anaerobes have been long studied as potential biomass-fermenting organisms, development efforts for commercial ethanol production have not been reported. Here, we describe the highest ethanol titers achieved from T. saccharolyticum during a 4-year project to develop it for industrial production of ethanol from pre-treated hardwood at 51–55 °C. We describe organism and bioprocess development efforts undertaken to improve ethanol production. The final strain M2886 was generated by removing genes for exopolysaccharide synthesis, the regulator perR, and re-introduction of phosphotransacetylase and acetate kinase into the methyglyoxal synthase gene. It was also subject to multiple rounds of adaptation and selection, resulting in mutations later identified by resequencing. The highest ethanol titer achieved was 70 g/L in batch culture with a mixture of cellobiose and maltodextrin. In a “mock hydrolysate” Simultaneous Saccharification and Fermentation (SSF) with Sigmacell-20, glucose, xylose, and acetic acid, an ethanol titer of 61 g/L was achieved, at 92 % of theoretical yield. Fungal cellulases were rapidly inactivated under these conditions and had to be supplemented with cellulosomes from C. thermocellum. Ethanol titers of 31 g/L were reached in a 100 L SSF of pre-treated hardwood and 26 g/L in a fermentation of a hardwood hemicellulose extract. This study demonstrates that thermophilic anaerobes are capable of producing ethanol at high yield and at titers greater than 60 g/L from purified substrates, but additional work is needed to produce the same ethanol titers from pre-treated hardwood.

46 citations

Journal ArticleDOI
TL;DR: In the present study, biosurfactant production by Bacillus subtilis SPB1 was effectively enhanced by response surface methodology and the predicted value is approximately 1.65 much higher than the original production determined by the conventional one-factor-at-a-time optimization method.
Abstract: Nutritional requirements can contribute considerably to the production cost and the bioprocess economics. Media optimisation using response surface methodology is one of the used methods to ameliorate the bioprocess economics. In the present study, biosurfactant production by Bacillus subtilis SPB1 was effectively enhanced by response surface methodology. A Plackett-Burman-based statistical screening procedure was adopted to determine the most important factor affecting lipopeptide production. Eleven variables are screened and results show that glucose, K2HPO4, and urea concentrations influence the most biosurfactant production. A Central Composite Design was conducted to optimize the three selected factors. Statistical analyses of the data of model fitting were done by using NemrodW. Results show a maximum predicted biosurfactant concentration of 2.93 (±0.32) g/L when using 15 g/L glucose, 6 g/L urea, and 1 g/L K2HPO4. The predicted value is approximately 1.65 much higher than the original production determined by the conventional one-factor-at-a-time optimization method.

46 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
83% related
Biofuel
23.8K papers, 902.4K citations
81% related
Anaerobic digestion
21.8K papers, 575K citations
79% related
Cellulase
16.1K papers, 479.5K citations
79% related
Yeast
31.7K papers, 868.9K citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023331
2022785
2021165
2020153
2019159
2018127