scispace - formally typeset
Search or ask a question
Topic

Bioprocess

About: Bioprocess is a research topic. Over the lifetime, 2219 publications have been published within this topic receiving 50972 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The current advances towards biofuel and its value-added production from various microalgae co-culture is summarized and compared it with monoculture fermentation and some critical challenges of co-culturing for the economically viable bioprocess development for biofuel production are included.
Abstract: Microalgae have been reported to exhibit mutualistic interactions with other microorganisms like bacteria, filamentous fungi, and yeast and help each other co-exist. The potential of microalgae to perform photosynthesis and accumulate lipids make them suitable candidates for lipid production. Biofuel production from various single oleaginous microorganisms is already in practice. However, the high cost of biomass harvesting, extraction of lipids, and contamination issues are significant challenges of biofuel bioprocess commercialization. Recent microalgal co-culture studies showed considerable potential for easy biomass harvesting and reduction in overall energy consumption cost. Therefore, microalgal co-culture could be an alternative to overcome these constraints and enhance biomass and lipid production. Additionally, the integration of the nutrient sequestration process from potential agro-industrial wastewater using microalgal co-culture can reduce the cost of the substrate requirement for cultivation as well as ecological load. The co-culture in wastewater has shown excellent total phosphate removal efficiencies by microalgae Chlorella sorokiniana and yeast Rhodotorula glutinis, nitrogen removal by microalgae C. sorokiniana with activated sludge, and ammonium-nitrogen removal by C. vulgaris and fungi Aspergillus sp. co-culture. This review summarized the current advances towards biofuel and its value-added production from various microalgae co-culture and compared it with monoculture fermentation. It also includes some critical challenges of co-culturing for the economically viable bioprocess development for biofuel production. Furthermore, techno-economic analysis and life-cycle assessment of co-culture technology were also discussed for biofuel production feasibility from microalgal co-culture.

33 citations

Journal ArticleDOI
TL;DR: A two-stage strategy was developed to enhance the biomass production of the MB-1 strain in stage 1 with semi-batch mixotrophic culture and to optimize lutein accumulation in stage 2 under photoautotrophic conditions.

33 citations

Journal ArticleDOI
TL;DR: This study is first ever where-in IL-stable cellulase production is accomplished using agroindustrial residues by employing DoE, and assessed for its application potential under OPCB for saccharification of IL-pretreated PNB.
Abstract: Ionic liquid (IL) based pretreatment of lignocellulosic biomass for facilitating efficient enzymatic saccharification has emerged as an environmentally benign approach that offers several advantages over conventional strategies. However, residues of ionic liquid left in the pretreated biomass may cause inactivation of saccharifying enzymes thus, necessitating the requirement of ionic liquid-stable enzymes. Cost-effective production of industrial enzymes is always desired to enhance the overall process economy. Current study reports IL-stable cellulase production from a newly isolated bacterium Bacillus subtilis G2. Design of experiment (DoE) based on response surface methodology was used in sequential manner for optimizing cultural and environmental variables to enhance cellulase production by 2.66-fold. IL-stable cellulase was used for saccharification of IL-pretreated pine needle biomass (PNB) with 1-ethyl-3-methylimidazolium methanesulfonate in a consolidated single pot process i.e. one pot consolidated bioprocess (OPCB). The saccharification efficiency of 23.57 % was observed under OPCB. The hydrolsate obtained was fermented by dual culture of yeast i.e. Saccharomyces cereviasie NCIM 3078 and Pichia stipitis NCIM 3497, and a yield of 0.092 g ethanol/g of PNB was obtained with fermentation efficiency of 25.62 %. This study is first ever where-in IL-stable cellulase production is accomplished using agroindustrial residues by employing DoE, and assessed for its application potential under OPCB for saccharification of IL-pretreated PNB. IL-stable cellulases would not only preclude expensive washing step following IL-pretreatment of biomass, but their application in a consolidated single pot process (OPCB) offers numerous technoeconomic advantages over conventional multi pot processes. Production of ionic liquid (IL) tolerant cellulase from Bacillus subtilis G2 was enhanced by 2.66-fold using response surface methodology. Cellulase was assessed for its saccharification potential on IL-pretreated pine needle biomass under one pot consolidated bioprocess, and the hydrolysate was fermented to ethanol using Saccharomyces cereviasie and Pichia stipitis.

33 citations

Journal ArticleDOI
TL;DR: A sustainable bioprocess was developed for the valorization of a no/low value substrate, i.e. waste frying oils with high content of free fatty acids, otherwise unsuitable for biodiesel production, together with an efficient conversion of the treated WFO into biodiesel.
Abstract: A sustainable bioprocess was developed for the valorization of a no/low value substrate, i.e. waste frying oils (WFOs) with high content of free fatty acids (FFAs), otherwise unsuitable for biodiesel production. The bioprocess was verified using both recombinant (Escherichia coli) and native (Pseudomonas resinovorans) polyhydroxyalkanoates (PHAs) producing cell factories. Microbial fermentation of WFOs provided a 2-fold advantage: i) the reduction of FFAs content resulting into an upgrading of the “exhausted waste oils” and ii) the production of a bio-based microbial polymer. Proper strain designing and process optimization allowed to achieve up to 1.5 g L−1 of medium chain length, mcl-PHAs, together with an efficient conversion (80% yield) of the treated WFO into biodiesel.

33 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
83% related
Biofuel
23.8K papers, 902.4K citations
81% related
Anaerobic digestion
21.8K papers, 575K citations
79% related
Cellulase
16.1K papers, 479.5K citations
79% related
Yeast
31.7K papers, 868.9K citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023340
2022788
2021166
2020153
2019160
2018130