scispace - formally typeset
Search or ask a question
Topic

Bioprocess

About: Bioprocess is a research topic. Over the lifetime, 2219 publications have been published within this topic receiving 50972 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , a review summarizes the novel technological developments in adapting genetic and metabolic engineering strategies for selection and construction of chassis strains for BDO and acetoin production and evaluates the technoeconomic aspects evaluating the viability and industrial potential of bio-based BDO production.

31 citations

Journal ArticleDOI
TL;DR: Recent measures to improve monomer-free COS production using chitosanase/non-specific enzymes and purification/fractionation of these molecules using ultrafiltration and column chromatographic techniques are covered.
Abstract: Biological activities of chitosan oligosaccharides (COS) are well documented, and numerous reports of COS production using specific and non-specific enzymes are available. However, strategies for improving the overall yield by making it monomer free need to be developed. Continuous enzymatic production from chitosan derived from marine wastes is desirable and is cost-effective. Isolation of potential microbes showing chitosanase activity from various ecological niches, gene cloning, enzyme immobilization, and fractionation/purification of COS are some areas, where lot of work is in progress. This review covers recent measures to improve monomer-free COS production using chitosanase/non-specific enzymes and purification/fractionation of these molecules using ultrafiltration and column chromatographic techniques. Various bioprocess strategies, gene cloning for enhanced chitosanase enzyme production, and other measures for COS yield improvements have also been covered in this review. COS derivative preparation as well as COS-coated nanoparticles for efficient drug delivery are being focused in recent studies.

31 citations

Book ChapterDOI
TL;DR: Emphasis is on parallel bioreactors for bioprocess design, biochemical systems characterization and metabolic control analysis, as well as on preparative chromatography, affinity filtration and protein crystallization on a process scale.
Abstract: Efficient parallel tools for bioprocess design, consequent application of the concepts for metabolic process analysis as well as innovative downstream processing techniques are enabling technologies for new industrial bioprocesses from an engineering point of view. Basic principles, state-of-the-art techniques and cutting-edge technologies are briefly reviewed. Emphasis is on parallel bioreactors for bioprocess design, biochemical systems characterization and metabolic control analysis, as well as on preparative chromatography, affinity filtration and protein crystallization on a process scale.

30 citations

Journal ArticleDOI
TL;DR: There is a clear need for an efficient, scalable and economical process for phytase production and bioseparation, and improvements are especially required with regard to yield, purity, and energy consumption.
Abstract: Phosphorus is one of nature's paradoxes as it is life's bottleneck for subsistence on earth but at same time is detrimental in surplus quantities in an aquatic environment. Phosphorus cannot be manufactured, though fortunately it can be recovered and reused. The only way to avert a supply crisis is to implement the “3R's” of sustainability, “Reduce, Reuse and Recycle.” Phytase is likely to play a critical role in the dephosphorylation of antinutritional and indigestible phytate, a phosphorus locking molecule, to digestible phosphorus, calcium and other mineral nutrients in the coming years. Hence, efforts are required to produce cost effective phytase with fast upstream and economic downstream processing because the current available process is expensive and time consuming. This review summarizes the present state of methods studied for phytase bioprocessing. Production, extraction and purification incur a large cost in product development. In addition, the process has several limitations such as dilute concentration of enzyme, extensive downstream procedures and treatment of generated effluents. However, these methods are currently employed due to lack of alternative methods. Thus, there is a clear need for an efficient, scalable and economical process for phytase production and bioseparation, and improvements are especially required with regard to yield, purity, and energy consumption. Perspectives for an improved bioprocess development for phytase are discussed based on our own experience and recent studies. It is argued that the optimization of production techniques, strain improvement and liquid–liquid extraction deserves more attention in the future.

30 citations

Journal ArticleDOI
TL;DR: Enzymes are core elements of biosynthetic pathways employed in the synthesis of numerous bioproducts and cell-free systems are an attractive option, especially in combination with enzyme immobilization that allows extended enzyme use.

30 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
83% related
Biofuel
23.8K papers, 902.4K citations
81% related
Anaerobic digestion
21.8K papers, 575K citations
79% related
Cellulase
16.1K papers, 479.5K citations
79% related
Yeast
31.7K papers, 868.9K citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023331
2022785
2021165
2020153
2019159
2018127